American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: http://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2018, 6(1), 1-7
DOI: 10.12691/ajer-6-1-1
Open AccessArticle

Numerical Simulation of Effect of Topology on the Airflow Characteristics inside an Indirect Solar Dryer

DJIAKO Thomas1, TAWETSING M. P. Olivier2, EDOUN Marcel2, , DESMORIEUX Helène3 and KUITCHE Alexis2

1University Institute of Guinea Gulf, P.O Box 89 Douala-Cameroon

2Laboratory of Energetic and Applied Thermal Process, ENSAI, P.O. Box 455 University of Ngaoundere-Cameroon

3LAGEP/ University of Claude Bernard-Lyon1, CPE, Bât 308G, 43, Bd du 11 novembre, 69622 Villeurbanne Cedex

Pub. Date: June 30, 2018

Cite this paper:
DJIAKO Thomas, TAWETSING M. P. Olivier, EDOUN Marcel, DESMORIEUX Helène and KUITCHE Alexis. Numerical Simulation of Effect of Topology on the Airflow Characteristics inside an Indirect Solar Dryer. American Journal of Energy Research. 2018; 6(1):1-7. doi: 10.12691/ajer-6-1-1

Abstract

The present work is part of the optimization of indirect solar dryers. The main objective is to highlight the influence of topological forms of dryers on air settings. For this, we have studied the behavior of air in the collector for four inclinations angles (0°, 30°, 40° and 60°), three values of the height of the drying chamber (1, 1.20 and 1.40 m) and three values of the height of the chimney (0.3, 0.8, and 1.5 m). The Navier-Stokes equations were numerically solved using the finite volume method through the Easy CFD_G package code in its V.4.1.0 version. The numerical simulation was used to define for each load configuration studied, the temperature profile, velocity and pressure. The results show that for the solar collector, 30° is the optimum angle of inclination. This angle provides a better distribution of the velocity vector field. For this angle, the height of the drying chamber allowing a better distribution of velocity and temperature gradient is 1.40 m. The maximum chimney height is 1.5 m. These parameters are used to define an optimal configuration of the indirect solar dryer in which the air temperature varies between 56 and 64°C and drying air velocity between 0.5 and 0.9 m/s.

Keywords:
indirect solar dryer numerical simulation topology CFD

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 13

References:

[1]  Edoun M., Kuitche A., Marouzé C., Giroux F., Kapseu C. (2010). Etat de la pratique du séchage de quelques fruits et légumes à petite échelle dans le Sud Cameroun. Fruits Cirad/EDP Sciences (1), pp. 25-36.
 
[2]  Mujumdar A. S. (1997). modeling and numerical simulation Solar drying foods, Solar Energy, N° 314, pp. 151-157.
 
[3]  Bimbenet J. J., Duquenoy A., Trystram G. (2002). Génie des Procédés alimentaires. Des bases aux applications, Dunod, Paris.
 
[4]  Daguenet M. (1985). Les Séchoirs solaires : théorie et pratique. Unesco.
 
[5]  Ekechukwu O.V., Norton B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology, Energy Conversion & Management, Vol 40, pp. 615-655.
 
[6]  Edoun M., Takamte G., Monkam L., Kuitche A., Kamga R. (2013). Numerical Simulation of Convective Drying of Mangoes (mangiferaIndica L.) Under Variable Thermal Conditions, INPRESSCO International Journal of Thermal Technologies, Vol 3 (2), pp. 48-52.
 
[7]  Sokhansanj S., Jayas D. (1995). Drying of Foodstuffs”, In: Mujumdar A.S., Editor. Handbook of Industrial Drying, 2. New York: Marcel Decker Inc.
 
[8]  Kouhila M., Belghit A., Kaoua M., Daguenet M. (1998). Etude Expérimentale du Séchage Convectif de la Menthe dans un Séchoir Modulaire Polyvalent à Chauffage partiellement Solaire Revue des Energies Renouvelables, pp.1-5.
 
[9]  Edoun M., Fokone A. T., Kuitche A., Kengne C. (2013). Modeling of Drying Kinetics of Fresh Carrot (Daucus carota), International Journal of Innovation and Applied Studies, Vol4 (2), pp. 375-381.
 
[10]  Kuitche A., Kouam J., Edoun M. (2006). Modélisation du profil de température dans un séchoir construit dans l’environnement tropical, Journal of Food Engineering, Vol76, pp. 605-610.
 
[11]  Kuitche A., Edoun M., Takamte G.. ‘2007). Influence of pretreatment on the drying kinetic of a local Okro (Hibiscus esculentus) Variety, World Journal of Dairy and Food Sciences, Vol 2 (2), pp. 83-88.
 
[12]  Mokretar Sofiane (2009). Contribution théorique et expérimentale à l’étude du bilan d’énergie et de masse d’un séchoir solaire de type serre. Application à la détermination de la cinétique de séchage des prunes”, Thèse de Doctorat, Université des Sciences et de la Technologie.
 
[13]  Dadda B., Kherrour S., Serir L. (2008). Réalisation d’un séchoir solaire indirect, Revue des Energies Renouvelables, pp. 127-134.
 
[14]  Cristiana B. M., Guimarães A. F., L. C-G., S. de Hanriot M., T. de Martins O. (2012). Simulation of the airflow inside a hybrid dryer, IJRRAS, Vol10 (3), pp. 382-389.
 
[15]  Abdelhamid B. (1997). Etude numérique d’un séchoir solaire fonctionnant en convection forcée. Revue générale de thermique, Vol 36, pp. 837-850.
 
[16]  Miri R., Mokrani O., Siad F., Belhamel M. (2002). Etude Expérimentale d’un Séchoir Solaire, Revue des Energies Renouvelables, pp. 41- 48.
 
[17]  Boubeghal A., Benhammou M., Moungar H. (2008). Conception et simulation numérique d’un séchoir solaire à convection Forcée: Application sur le séchage de piment, 2ème séminaire maghrébin sur les sciences et les technologies de séchage SMSTS.
 
[18]  Heilporn (2012). Contribution au développement d’une nouvelle technologie de séchage solaire. application à la mangue. Thèse de Doctorat, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles.
 
[19]  Andrew R. H. R., Jakhrani A. Q., Kamboh S. A. Tiong Kie P. L. (2013). Development of an Indirect Solar Dryer with Biomass Backup Burner for Drying Pepper Berries, World Applied Sciences Journal, Vol22 (9), pp. 1241-1251.
 
[20]  Augustus L. M, Kumar S., Bhattacharya S.C. (2002). A comprehensive procedure for performance evaluation of solar food dryers, Renewable and Sustainable Energy Reviews, Vol 6, pp. 367-393.
 
[21]  Gameiro Lopes A. M..(2012). Easy CFD_G V4.1.0 User’s Manual.
 
[22]  Launder B.E.., Spalding D.B. (1972). Mathematical models of turbulence. Academic Press London and New York, ISBN 0-12-438050-6.
 
[23]  Launder B.E., Spalding D.B. (1974). The numerical computer of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, Vol3, pp. 269-289.
 
[24]  Djilali N., Gantshore I.., Salcudean M. (1987). Calculation of convective heat transfer in recirculating turbulent flows using various Near-wall turbulence models, Numerical Heat Transfer, 16, pp. 189-212.