American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Energy Research. 2017, 5(2), 41-50
DOI: 10.12691/ajer-5-2-3
Open AccessArticle

Simulation and Prediction of the Power Output and the Photocurrent for Photovoltaic Systems

Kossi Kety1, Apélété Komi Amou1, Koffi Sagna1, , Yendoubé Lare1 and Kossi Napo1

1Solar Energy Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, Lomé, Togo

Pub. Date: August 24, 2017

Cite this paper:
Kossi Kety, Apélété Komi Amou, Koffi Sagna, Yendoubé Lare and Kossi Napo. Simulation and Prediction of the Power Output and the Photocurrent for Photovoltaic Systems. American Journal of Energy Research. 2017; 5(2):41-50. doi: 10.12691/ajer-5-2-3


We study in this paper, based on comparison already made in the literature concerning photovoltaic generator power models, the most optimal model applied to the operation of the photovoltaic generator of Sévagan (Togo). The comparison with the experimental data is carried out, which allowed us to verify the validity of the model. Finally, the influence of the characteristic parameters on the photovoltaic module ECO LINE LX-260P used to make the photovoltaic generator of the Sévagan dispensary (in Togo) is studied in order to predict the power production of the module according to the meteorological conditions(temperature-Irradiation). The comparison with the experimental data will be carried out in order to verify the validity of the model. To verify the validity of the model throughout the range of weather conditions, the process was done in two steps: on a sunny day and a cloudy day. A good agreement was observed with 95%, 97% and 99% correlation coefficients for cloudy, sunny days and the generator photocurrent simulation respectively. The results demonstrate an acceptable accuracy of the power model under different environmental conditions.

simulation photovoltaic generator power output models - prediction optimization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Bogdan S Borowy, Ziyad M Salameh, 1996. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE transactions on energy conversion, 11(2): 367-375.
[2]  A.D. Jones et C.P. Underwood, 2002. A modelling method for building-integrated photovoltaic power supply. Building Services Engineering Research and Technology, 23(3): 167-177.
[3]  Lin Lu et HX Yang, 2004. A study on simulations of the power output and practical models for building integrated photovoltaic systems. Journal of solar energy engineering, 126(3): 929-935.
[4]  Fethi Benyarou, 2015. Conception assistée par ordinateur des systèmes photovoltaïques Modélisation, dimensionnement et simulation. Thèse de doctorat.
[5]  R Zieba Falama, A Dadjé, N Djongyang et SY Doka, 2016. A new analytical modeling method for photovoltaic solar cells based on derivative power function. Journal of Fundamental and Applied Sciences, 8(2): 426-437.
[6]  Ahmed Yahfdhou, Abdel Kader Mahmoud, Issakha Youm, 2016. Evaluation and determination of seven and five parameters of a photovoltaic generator by an iterative method. arXiv preprint arXiv:1601.03257.
[7]  Lin Lu et HX Yang, 2010. Environmental payback time analysis of a roof-mounted building integrated photovoltaic (bipv) system in hong kong. Applied Energy, 87(12):3625-3631.
[8]  Belhadj Mohammed, 2008. Modélisation d’un système de captage photovoltaïque autonome. Mémoire de Magistère, Université de Bechar.
[9]  Kashif Ishaque, Zainal Salam et Hamed Taheri, 2011. Simple, fast and accurate two-diode model for photovoltaic modules. Solar Energy Materials and Solar Cells, 95(2):586-594.
[10]  JA Gow et CD Manning. 1996. Development of a model for photovoltaic arrays suitable for use in simulation studies of solar energy conversion systems. In Power Electronics and Variable Speed Drives, 1996. Sixth International Conference on (Conf. Publ. No. 429), 69-74.
[11]  S Chowdhury, GA Taylor, SP Chowdhury, AK Saha etYH Song.. 2007. Modelling, simulation and performance analysis of a pv array in an embedded environment. In Universities Power Engineering Conference, UPEC 2007. 42nd International, 781-785.
[12]  Anssi Hovinen. 1994. Fitting of the solar cell iv-curve to the two diode model. Physica Scripta, 1994 (T54):175.
[13]  Jaakko Hyvarinen et Juha Karila. 2003. New analysis method for crystalline silicon cells. In Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, volume 2, 1521-1524.
[14]  Ken-ichi Kurobe et Hiroyuki Matsunami. 2005. New two-diode model for detailed analysis of multicrystalline silicon solar cells. Japanese journal of applied physics, 44(12R):8314.
[15]  Kensuke Nishioka, Nobuhiro Sakitani, Ken-ichi Kurobe, Yukie Yamamoto, Yasuaki Ishikawa, Yukiharu Uraoka et Takashi Fuyuki. 2003. Analysis of the temperature characteristics in polycrystalline Si solar cells using modified equivalent circuit model. Japanese journal of applied physics, 42(12R):7175.
[16]  Kensuke Nishioka, Nobuhiro Sakitani, Yukiharu Uraoka et Takashi Fuyuki. 2007. Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Solar Energy Materials and Solar Cells, 91(13): 1222-1227.
[17]  Chih-Tang Sah, Robert N Noyce et William Shockley. 1957. Carrier generation and recombination in pn junctions and pn junction characteristics. Proceedings of the IRE, 45(9):1228-1243.
[18]  Wei Zhou, Hongxing Yang, Zhaohong Fang, 2007. A novel model for photovoltaic array performance prediction. Applied energy, 84(12): 1187-1198.
[19]  Bertrand Gélis, Vincent Creuze, Christian Glaize, Franck Lecat et Vincent Thomas. 2013. Travaux pratiques de caractérisation de panneaux photovoltaïques. In CETSIS: Colloque sur l’Enseignement des Technologies et des Sciences de l’Information et des Systèmes, numéro 10ème, 001-006.
[20]  R Merahi, R Chenni et M Houbes, 2010. Modélisation et simulation d’un module pv par matlab. Journal of Scientific Research N° vol, 1.
[21]  R Chenni, M Makhlouf, T Kerbache A Bouzid, 2007. A detailed modeling method for photovoltaic cells. Energy, 32(9): 1724-1730.