American Journal of Epidemiology and Infectious Disease
ISSN (Print): 2333-116X ISSN (Online): 2333-1275 Website: http://www.sciepub.com/journal/ajeid Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Epidemiology and Infectious Disease. 2013, 1(4), 41-46
DOI: 10.12691/ajeid-1-4-3
Open AccessArticle

Persistence of Schistosoma Haematobium and Geohelminthes Infection in Residents of Two Villages in Msambweni District of Coast Province, Kenya

Matonge P. M.1, , Muturi M2 and Kamau Lucy M1

1Department of Zoological Sciences, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya

2Department of Medical Laboratory Sciences, School of Health sciences, Kenyatta University, Nairobi, Kenya

Pub. Date: November 08, 2013

Cite this paper:
Matonge P. M., Muturi M and Kamau Lucy M. Persistence of Schistosoma Haematobium and Geohelminthes Infection in Residents of Two Villages in Msambweni District of Coast Province, Kenya. American Journal of Epidemiology and Infectious Disease. 2013; 1(4):41-46. doi: 10.12691/ajeid-1-4-3

Abstract

Urinary Schistosomiasis and soil transmitted helminths (STH) infections are serious problems in developing countries owing to climatic, environmental, and behavioral factors of the people that favor transmission. A cross-sectional survey involving 1,232 people aged 5-78 years in two villages in Vingujini Sub-Location, Msambweni District of Coast Province in Kenya was conducted to determine prevalence of Schistosoma haematobium and soil transmitted helminths infections. Urine and stool samples were collected from 1,232 people in two villages in Vingujini Sub-Location. The samples were examined for eggs of Schistosoma haematobium and intestinal helminths respectively. Hematuria was determined using urine dip strips. Hemoglobin levels were determined for all participants to establish the relationship between hookworm disease and anemia. The overall occurrence of helminth infections were; 44% for Schistosoma haematobium, 29.6% for hookworm disease, 0.5% for Ascaris and 24.6% for trichuriasis (N = 1,232). Only 32.7% were free from any of the four types of parasitic infections screened. Infection with schistosome was highly correlated with Trichuris infection (r = 0.96, p = 0.006) and also highly correlated with age (f = 95.17, p > 0.01). Infections with Schistosoma haematobium (f = 95.17, p > 0.01), hookworm disease (f = 11.51, p = 0.010) and trichuriasis (f = 26.46, p > 0.01) were also age correlated. High intensities of Schistosoma haematobium were associated with hematuria (f = 639.99, p > 0.01). Prevalence of hookworm disease was not correlated with anemia, but there was a relationship between intensity of hookworm infection and anemia (r = -0.091, P< 0.01). Individuals with heavy and medium intensity of hookworm infections were more likely to suffer from anemia than individuals with low intensities or the non-infected (f = 5.5, p < 0.01). The current study has established high (44%) prevalence of urinary schistosomiasis, hookworm (29.6%) and Trichuris (24.6%) infections in Msambweni compared to national prevalence for schistosomiasis (23%), and global prevalence for hookworms (10-20%). Infections with Ascaris were low. Majority of Schistosome infected subjects were also infected with hookworms or at least one STH. The data suggests that measures of intensity are required for increasing effectiveness of current control programs and stresses the need for enhanced public health interventions against these diseases.

Keywords:
Schistosoma haematobium hookworms Trichuris Msambweni Kenya

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 1

References:

[1]  Van Der Werf, M.J., De Vlas, S.J., Morbidity and infection with schistosomes and soil transmitted helminthes. Acta Tropica, 86.1-3. 2001.
 
[2]  Stephenson, L.S., Latham, M.C., Kurz, K.M., Kinoti, S.N., Brigham, H., Treatment with a single dose of albendazole improves growth of Kenyan schoolchildren with hookworm Trichuris trichiura and Ascaris lumbricoides infection. Am J Trop Med Hyg, 41.78-87. 1989.
 
[3]  Brooker, S., Whawell, S., Kabatereine, N.B., Fenwick, A., Anderson, R.M., Evaluating the epidemiological impact of national control programmes for helminthes. Trends in Parasitology, 11.537-545. 2004.
 
[4]  Muchiri, E.M., Ouma, J.H., King, C.H., Dynamics and control of Schistosoma haematobium transmission in Kenya: An overview of the Msambweni Project. J Tro Med Hyg, 55.127-134. 1996.
 
[5]  WHO Schistosomiasis and soil transmitted helminth infections. 2001, Fifty fourth World Health Assembly resolution WHA5419 wwwhttp://whoint/gb/.
 
[6]  King, C.H., Keating, C.E., Muruka, J.F., Ouma, J.H., Houser, H., Arap Siongok, T.K., Mahmoud, A.A.F., Urinary tract morbidity in Schistosoma haematobium: associations with age and intensity of infection in an endemic area of coast province Kenya Am J trop Med Hyg. 39.361-368. 1988.
 
[7]  Kenya National Bureau of Statistics. The Kenya national persons and housing population census. Nairobi.
 
[8]  http/www.knbs.or.ke/finddata.php. 2009.
 
[9]  Fleck, S.L., Moody, A.H., Diagnostic techniques in Medical Parasitology, John Wright Publishers, London, 1988.
 
[10]  Satayathum, S.A., Muchiri, E.,M, Ouma, J.H., Whalen, C.C., King, C.H., Factors affecting infection or reinfection with schistosoma haematobium in coastal Kenya: survival analysis during a nine-year school-based treatment program, Am J Trop Med Hyg, 75(1).83-92. 2006.
 
[11]  Atupele, P., Kapito, T., Victor, M., Steven, R.M., Young, S., Dan, B., Cameron B., Sarah, R. Prevalence distribution and risk factors for Schistosoma haematobium infection among school children in Blantre Malawi, PLoS Negl Trop Dis, 3(1). 361. 2009.
 
[12]  Labiano-Abello, N., Canese, J., Velazquez, J.M., Hawdon, J.M, Wilson, M.L., Hotez, PJ., Epidemiology of hookworm infection in Itagua Paraguay: A cross sectional study, Mem Inst Oswaldo Cruz, 94.583-6. 1999.
 
[13]  Bethony, J., Chen, J.Z., Lin, S.X., Xiao, S.H., Zhan, B., Li, S.W., Xue, H.C., Xing, F.Y., Humphries, D., Wang, Y., Chen, G., Foster, V., Hawdon, J.M., Hotez, P.J., Emerging patterns of hookworm infection: influence of aging on the intensity of Necator infection in Hainan Province People‚Äôs Republic of China, Clin Infect Dis, 35(11).1336-44. 2002.
 
[14]  Vittaya, j., Wongwarit, A., Mathirut, M., Rommanee, K., Ram, R., Rebecca, J.T, Phunlerd, P., Tawee, N., Paanjit, T., Saovanee, L., Incidence and risk factors of hookworm infection in a rural community of central Thailand. Am. J. Trop. Med. Hyg. 84(4). 594-598. 2011.
 
[15]  Warren, K.S., Mahmoud, A.A.F., Muruka, J.F., Whittaker, L.R., Ouma, J.H., Arap Siongok, T.K., Schistosomiasis haematobia in coast province Kenya Relationship between egg output and morbidity, Am J Trop Med Hyg, 28, 864-8701979.
 
[16]  Renee, L., Martin, C., Eduardo, G., Theresa, W.G., Relationship between intensity of soil-transmitted helminth infections and anemia during pregnancy. Am J Trop Med Hyg, 73(4):783-789. 2005.
 
[17]  Crompton, D.W.T., Savioli, L., Intestinal parasitic infections and urbanization. Bulletin of the World Health Organization, 71:1-7. 1993.