American Journal of Epidemiology and Infectious Disease
ISSN (Print): 2333-116X ISSN (Online): 2333-1275 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Epidemiology and Infectious Disease. 2014, 2(1), 19-23
DOI: 10.12691/ajeid-2-1-4
Open AccessArticle

Drug Resistant Bacteria are Growing Menace in a University Hospital in Nepal

Shyam Kumar Mishra1, , Bal Krishna Awal1, Hari Prasad Kattel1, Jyoti Acharya1, Prabin Gyawali2, Chandra Prakash Bhatt3, Niranjan Prasad Shah1, Keshab Parajuli1, Basista Prasad Rijal1 and Bharat Mani Pokhrel1

1Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal

2Department of Biochemistry, Kathmandu University School of Medical Science, Kathmandu University, Kavre, Nepal

3Department of Microbiology, Kathmandu Medical College, Kathmandu University, Kathmandu, Nepal

Pub. Date: January 15, 2014

Cite this paper:
Shyam Kumar Mishra, Bal Krishna Awal, Hari Prasad Kattel, Jyoti Acharya, Prabin Gyawali, Chandra Prakash Bhatt, Niranjan Prasad Shah, Keshab Parajuli, Basista Prasad Rijal and Bharat Mani Pokhrel. Drug Resistant Bacteria are Growing Menace in a University Hospital in Nepal. American Journal of Epidemiology and Infectious Disease. 2014; 2(1):19-23. doi: 10.12691/ajeid-2-1-4


Large amounts of antibiotics used for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has created problems in the treatment of patients. So, this study was carried out to determine multidrug resistant (MDR) bacterial pathogens and their antibiogram in patients with clinically suspected pneumonia attending a tertiary care centre in central Nepal. Specimens representing lower respiratory tract were processed using standard protocol. Antibiotic susceptibility test was performed on bacterial pathogens by Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Fifty-four percent of the total bacterial isolates were MDR. Multidrug resistance was found in Klebsiella pneumoniae (23.4%), Pseudomonads (20.5%), Acinetobacter calcoaceticus baumannii complex (20.6%), Escherichia coli (11.6%), Staphylococcus aureus (9.1%) and others. Non-fermentative bacteria were more multidrug resistant (MDR) than Enterobacteriaceae (77.8% vs. 68.9%) whereas extended-spectrum beta-lactamase (ESBL) was considerably higher among Enterobacteriaceae (37.27% vs. 10.46%). Resistance was seen even against carbapenems. Only polymyxins were effective against multidrug resistant gram-negative bacterial isolates. This study shows an emergence of MDR bacterial pathogens at an alarmingly high level as the isolates were resistant to almost all antibiotics commonly used in our set-up. There must be prudent use of antibiotics to prevent the emergence of MDR bacterial isolates.

carbapenems multidrug resistant pneumonia polymyxins bacterial pathogens

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Bryce, J., Boschi-Pinto, C., Shibuya, K. and Black, R.E, “Who estimates of death in children,” Lancet, 365. 1147-1152, 2005.
[2]  File, T.M, “The epidemiology of respiratory tract infections,” Seminars in Respiratory Infections, 15. 184-194, 2000.
[3]  Tuladhar, N.R., Banjade, N., Pokhrel, B.M, et al. “Comparative study of multi-drug resistant strains of respiratory pathogens among in and out patients of Tribhuvan University Teaching Hospital, Kathmandu, Nepal,” Journal of Nepal Association for Medical Laboratory Sciences, 6. 19-24, 2004.
[4]  Pokhrel, B.M., Koirala, J., Mishra, S.K., Dahal, R.K., Khadga, P.K. and Tuladhar, N.R, “Multidrug resistance and extended spectrum beta lactamase producing strains causing lower respiratory tract and urinary tract infection,” Journal of Institute of Medicine, 28. 19-27, 2006.
[5]  Isenberg, H.D, Clinical Microbiology Procedures Handbook. 2nd ed. Washington D.C., ASM press, 2004.
[6]  Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 17th informational supplement. Wayne, PA, M100-S17, 2007.
[7]  Adams-Haduch, J.M., Paterson, D.L., Sidjabat, H.E, et al. “Genetic Basis of Multidrug Resistance in Acinetobacter baumannii Clinical Isolates at a Tertiary Medical Center in Pennsylvania,” Antimicrobial Agents and Chemotherapy, 52. 3837-3843, 2008.
[8]  Guthrie, R. “Community-acquired lower respiratory tract infections: etiology and treatment,” Chest, 120. 2021-2034, 2001.
[9]  Filius, P.M., Gyssens, I.C., Kershof, I.M., et al. “Colonization and resistance dynamics of gram-negative bacteria in patients during and after hospitalization,” Antimicrobial Agents and Chemotherapy, 49. 2879-2886, 2005.
[10]  Ling, T.K.W., Ying, C.M., Lee, C.C. and Liu, Z.K, “Comparison of Antimicrobial Resistance of Acinetobacter baumannii Clinical Isolates from Shanghai and Hong Kong,” Medical Principles and Practice, 14. 338-341, 2005.
[11]  Gupta, E., Mohanty, S., Sood, S., Dhawan, B., Das, B.K. and Kapil, A, “Emerging resistance to carbapenems in a tertiary care hospital in north India,” Indian Journal of Medical Research, 124. 95-98, 2006.
[12]  Sinha, M. and Srinivasa, H, “Mechanisms of resistance to carbapenems in meropenem-resistant Acinetobacter isolates from clinical samples,” Indian Journal of Medical Microbiology, 25. 121-125, 2007.
[13]  Kattel, H.P., Acharya, J., Mishra, S.K., Rijal, B.P. and Pokhrel, B.M, “Comparative study of sensitivity patterns of common isolates in Tribhuvan University Teaching Hospital (TUTH),” APUA-Nepal Newletter, 4. 1-4, 2007.
[14]  Queenan, A.M. and Bush, K, “Carbapenemases: the versatile beta-lactamases,” Clinical Microbiology Reviews, 20. 440-458, 2007.
[15]  Mishra, S.K., Acharya, J., Kattel, H.P., Koirala, J., Rijal, B.P., and Pokhrel, B.M, “Metallo-beta-lactamase producing gram-negative bacterial isolates,” Journal of Nepal Health Research Council, 10 (22). 208-213, 2012.
[16]  Aksaray, S., Dokuzoguz, B., Guvener, E., et al. “Surveillance of antimicrobial resistance among Gram-negative isolates from intensive care units in eight hospitals in Turkey,” Journal of Antimicrobial Chemotherapy, 45. 696-699, 2004.
[17]  Isaiah, I.N., Nche, B.T., Nwagu, I.G., and Nwagu, I.I, “Incidence of temonera, sulphuhydryl variables and cefotaximase genes associated with β-lactamase producing Escherichia coli in clinical isolates,” North American Journal of Medical Sciences, 3. 557-561, 2011.
[18]  Felmingham, D., Farrell, D.J., Reinert, R.R. and Morrissey, I. “Antibacterial resistance among children with community-acquired respiratory tract infections (PROTEKT 1999-2000),” Journal of Infection, 48. 39-55. 2004.
[19]  Mishra, S.K, Muktan, B., Pradhan, M, et al. “Detection of methicillin and inducible macrolide-lincosamide-streptogramins B-resistant Staphylococcus aureus clinical isolates in a tertiary care centre in Nepal.” Infection International, (Suppl), 1. 138-139, 2002.
[20]  Magiorakos, A.P., Srinivasan, A., Carey, R.B, et al. “Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance,” Clinical Microbiology and Infection, 18. 268-281, 2012.