American Journal of Electrical and Electronic Engineering
ISSN (Print): 2328-7365 ISSN (Online): 2328-7357 Website: Editor-in-chief: Naima kaabouch
Open Access
Journal Browser
American Journal of Electrical and Electronic Engineering. 2016, 4(3), 85-91
DOI: 10.12691/ajeee-4-3-3
Open AccessReview Article

An Optimization Technique Based on Profit of Investment and Market Clearing in Wind Power Systems

Maryam Ashkaboosi1, Seyed Mehdi Nourani1, Peyman Khazaei2, Morteza Dabbaghjamanesh3, and Amirhossein Moeini4

1Department of Visual Communication Design in Art and Architecture, Islamic Azad University - Tehran Central Branch, Tehran, Iran

2Department of Electrical and Computer Engineering, Shiraz University of Technology, Shiraz, Iran

3Department of Electrical and Computer Engineering, Northern Illinoise University, DeKalb, IL

4Department of Electrical and Computer Engineering, University of Florida, Giansville, FL

Pub. Date: June 28, 2016

Cite this paper:
Maryam Ashkaboosi, Seyed Mehdi Nourani, Peyman Khazaei, Morteza Dabbaghjamanesh and Amirhossein Moeini. An Optimization Technique Based on Profit of Investment and Market Clearing in Wind Power Systems. American Journal of Electrical and Electronic Engineering. 2016; 4(3):85-91. doi: 10.12691/ajeee-4-3-3


Recently, renewable energies are widely used instead of the fuel energies due to their individual potentials such as its availability, low price and environmentally friendly. One of the most important renewable energies is wind power. As a result, investment in wind power is one of the most interesting research to maximize the profit of the investment and market clearing. In this paper, bi-level optimization technique is proposed to maximize the investment problem and market clearing for the wind power at the same time and in one single problem. Then, karush–kuhn–tucker (KKT) conditions and mathematical programming with equilibrium constraints (MPEC) are applied and tried to find one level optimization problem. Due to the nonlinearity of the optimization equation, the Fortuny-Amat & McCarl (FM) linearization technique is used to linearize the model. Finally, the proposed technique is applied to the IEEE 24 buses. The result proves that the optimization analysis is very easy, fast and accurate due to the linear characteristic of the system. All the simulation results are carried out in MATLAB and GAMS softwares.

Optimization renewable energies wind powerkarush–kuhn–tucker (KKT) conditions mathematical programming Bi-level optimization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  B. Fox, “Wind Power Integration: Connection and System Operational Aspects”, Institution of Engineering and Technology, 2007.
[2]  L. Baringo and A. J. Conejo, “Wind Power Investment: A Benders Decomposition Approach,” in IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 433-441, Feb. 2012.
[3]  Xiu-Xing Yin, Yong-Gang Lin, Wei Li, Hong-wei Liu and Ya-Jing Gu, “Fuzzy-Logic Sliding-Mode Control Strategy for Extracting Maximum Wind Power,” in IEEE Transactions on Energy Conversion, vol. 30, no. 4, pp. 1267-1278, Dec. 2015.
[4]  Thomas, Gary E. “The interstellar wind and its influence on the interplanetary environment.” Annual review of earth and planetary sciences 6 (1978): 173-204.
[5]  J.L.C. Meza, Multicriteria analysis of power generation expansion planning, Ph.D thesis, Wichita State University, 2006.
[6]  S. Nakamura, “A review of electric production simulation and capacity expansion planning programs”, Int. J. Energy Research, vol. 8, pp. 231-240, 1984.
[7]  C. L. Chen, “Optimal Wind–Thermal Generating Unit Commitment,” in IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 273-280, March 2008
[8]  Zheng, Guo-qiang, Hai Bao, and Shu-yong Chen. “Amending algorithm for wind farm penetration optimization based on approximate linear programming method.” PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING 24.10 (2004): 68-71.
[9]  J. J. Hargreaves and B. F. Hobbs, “Commitment and Dispatch With Uncertain Wind Generation by Dynamic Programming,” in IEEE Transactions on Sustainable Energy, vol. 3, no. 4, pp. 724-734, Oct. 2012.
[10]  M. Esmaeeli Shahrakht and A. Kazemi, “Stochastic unit commitment of wind farms based on mixed-integer linear formulation,” Electrical Engineering (ICEE), 2012 20th Iranian Conference on, Tehran, 2012, pp. 380-385.
[11]  A.J. Pereira, J.T. Saraiva, “Generation expansion planning (GEP)–A long-term approach using system dynamics and genetic algorithms (GAs)”, J. Energy, vol. 36, pp. 5180-5199, 2011.
[12]  J. L. Ceciliano Meza, M. B. Yildirim and A. S. M. Masud, “A Multiobjective Evolutionary Programming Algorithm and Its Applications to Power Generation Expansion Planning,” in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 39, no. 5, pp. 1086-1096, Sept. 2009.
[13]  S.-L. Chen, T.-S. Zhan, M.-T. Tsay, “Generation expansion planning of the utility with refined immune algorithm”, J. Electric power systems research, vol. 76, pp. 251-258, 2006.
[14]  P. Murugan, “Modified particle swarm optimisation with a novel initialisation for finding optimal solution to the transmission expansion planning problem”, IET. J. Generation, Transmission & Distribution, vol. 6, pp. 1132-1142, 2012.
[15]  A. Soroudi, M. Afrasiab, “Binary PSO-based dynamic multi-objective model for distributed generation planning under uncertainty”, IET. J. Renewable Power Generation, vol. 6, pp. 67-78, 2012.
[16]  M. El Mokadem, V. Courtecuisse, C. Saudemont, B. Robyns and J. Deuse, “Fuzzy Logic Supervisor-Based Primary Frequency Control Experiments of a Variable-Speed Wind Generator,” in IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 407-417, Feb. 2009.
[17]  M. Dabbaghjamanesh, A. Moeini , M. Ashkaboosi , P. Khazaei, K. Mirzapalangi,”High Performance Control of Grid Connected Cascaded H-Bridge Active Rectifier Based on Type II-Fuzzy Logic Controller with Low Frequency Modulation Technique”,International Journal of Electrical and Computer Engineering (IJECE),Vol. 6, No. 2, April 2016, pp. 484~494,
[18]  S. S. Reddy, A. R. Abhyankar and P. R. Bijwe, “Market clearing for a wind-thermal power system incorporating wind generation and load forecast uncertainties,” 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012, pp. 1-8.
[19]  N. Zhang et al., “A Convex Model of Risk-Based Unit Commitment for Day-Ahead Market Clearing Considering Wind Power Uncertainty,” in IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1582-1592, May 2015
[20]  S. S. Reddy, P. R. Bijwe and A. R. Abhyankar, “Joint Energy and Spinning Reserve Market Clearing Incorporating Wind Power and Load Forecast Uncertainties,” in IEEE Systems Journal, vol. 9, no. 1, pp. 152-164, March 2015.
[21]  Saberi, Hossein, Mehran Sabahi, Mohammad BB Sharifian, and Mohammadreza Feyzi. “Improved sensorless direct torque control method using adaptive flux observer.” Power Electronics, IET 7, no. 7 (2014): 1675-1684.
[22]  Saberi, H., & Sharifian, M. B. B. (2012, October). An improved direct torque control using fuzzy logic controllers and adaptive observer. In Computer and Knowledge Engineering (ICCKE), 2012 2nd International eConference on (pp. 83-88). IEEE.
[23]  Amiri, M., Feyzi, M., & Saberi, H. (2013, February). A modified torque control approach for load sharing application using V/F induction motor drives. In Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2013 4th (pp. 1-6). IEEE.
[24]  A. Asadinejad, K. Tomsovic, M.G. Varzaneh, “Examination of incentive based demand response in western connection reduced model,” IEEE NAPS, Charlotte, NC, Oct. 4-6, 2015, pp. 1-6.
[25]  A. Asadinejad, M.G. Varzaneh, S. Mohajeryami, M. Abedi, “Using Biomass in Power Generation for Supplying Electrical and Thermal Energy in Iran and Evaluation of Environmental Pollution Spread,” Journal of Energy and Power Engineering , Volume 10, Issue 1, pp. 55-63.
[26]  S. Mohajeryami, A. Asadinejad, M. Doostan, “An Investigation of the Relationship between Accuracy of Customer Baseline Calculation and Efficiency of Peak Time Rebate Program,” IEEE PECI, IL, Feb. 23-24, 2016.
[27]  A. Sahba, R. Sahba, and W.-M. Lin, “Improving IPC in Simultaneous Multi-Threading (SMT) Processors by Capping IQ Utilization According to Dispatched Memory Instructions,” presented at the 2014 World Automation Congress, Waikoloa Village, HI, 2014.
[28]  A. Sahba, Y. Zhang, M. Hays and W.-M. Lin, “A Real-Time Per-Thread IQ-Capping Technique for Simultaneous MultiThreading (SMT) Processors”, In the Proceedings of the 11th International Conference on Information Technology New Generation (lTNG 2014), April 2014.
[29]  M. Bagheri, M. Madani, R. Sahba, and A. Sahba, “Real time object detection using a novel adaptive color thresholding method”, International ACM workshop on Ubiquitous meta user interfaces (Ubi-MUI'11), Scottsdale, AZ, November 2011.
[30]  Hajinoroozi, Mehdi, et al. “Prediction of driver's drowsy and alert states from EEG signals with deep learning” Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015 IEEE 6th International Workshop.
[31]  Hajinoroozi, Mehdi, et al. “Feature extraction with deep belief networks for driver's cognitive states prediction from EEG data.” Signal and Information Processing (ChinaSIP), 2015 IEEE China Summit and International Conference on. IEEE, 2015.
[32]  Grigoryan, Artyom M., and Mehdi Hajinoroozi. “Image and audio signal filtration with discrete Heap transforms.” Applied Mathematics and Sciences: An International Journal (MathSJ) 1.1 (2014): 1-18.
[33]  Grigoryan, Artyom M., and Mehdi Hajinoroozi. “A novel method of filtration by the discrete heap transforms.” IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2014.
[34]  Jenkinson, J., Grigoryan, A., Hajinoroozi, M., Diaz Hernandez, R., Peregrina Barreto, H., Ortiz Esquivel, A., ... & Chavushyan, V. (2014, October). Machine learning and image processing in astronomy with sparse data sets. In Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on (pp. 200-203). IEEE.
[35]  Rakhshan, Mohsen, Navid Vafamand, Mokhtar Shasadeghi, Morteza Dabbaghjamanesh, and Amirhossein Moeini. “Design of networked polynomial control systems with random delays: sum of squares approach.” International Journal of Automation and Control 10, no. 1 (2016): 73-86.