American Journal of Electrical and Electronic Engineering
ISSN (Print): 2328-7365 ISSN (Online): 2328-7357 Website: http://www.sciepub.com/journal/ajeee Editor-in-chief: Naima kaabouch
Open Access
Journal Browser
Go
American Journal of Electrical and Electronic Engineering. 2020, 8(1), 11-20
DOI: 10.12691/ajeee-8-1-2
Open AccessArticle

State-variable Synthesis of Electronically-Controllable Sinusoidal Oscillators

Manoj Kumar Jain1, V. K. Singh2 and Raj Senani3,

1Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, University of Lucknow, Lucknow 226031, India

2International Institute of Management and Technology, Meerut 250001, India

3Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, Sector 3, Dwarka, New Delhi-110078, India

Pub. Date: January 03, 2020

Cite this paper:
Manoj Kumar Jain, V. K. Singh and Raj Senani. State-variable Synthesis of Electronically-Controllable Sinusoidal Oscillators. American Journal of Electrical and Electronic Engineering. 2020; 8(1):11-20. doi: 10.12691/ajeee-8-1-2

Abstract

This paper presents a state-variable synthesis of a class of electronically-controllable sinusoidal oscillator circuits which employ Multiple output second generation controlled current conveyors (CCCII) as active elements, do not require any external passive resistors and employ only two grounded capacitors (GC). The systematic synthesis yields a class of fourteen new oscillators all of which provide independent electronic controls of both the frequency of oscillation and condition of oscillation through separate external bias currents. All the aforementioned features make the synthesized oscillators attractive from the view point of integrated circuit implementation. The workability of the derived circuits has been confirmed from SPICE simulations and some sample results are included. Based upon their performance, evaluated through simulations, the new circuits have been compared with those previously known as well as among themselves and the best circuits of the derived set have been identified.

Keywords:
sinusoidal oscillators controlled current conveyors electronically-controlled oscillators

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Senani, R., Bhaskar, D.R., Tripathi, M.P.: ‘On the realization of linear sinusoidal VCOs’, Int. J. Electron., 1993, 74, (5), pp. 727-733.
 
[2]  Senani, R.: ‘On equivalent forms of single op-amp sinusoidal RC oscillators’, IEEE Trans. Circuits Syst. I: Fundamental Theor. Appl., 1994, 41, (10), pp. 617-624.
 
[3]  Bhaskar, D.R., Senani, R. ‘New linearly tunable CMOS-compatible OTA-C oscillators with non-interacting controls’, Microelectronics J., 1994, 25, pp. 115-123.
 
[4]  Senani, R., Singh, V.K.: ‘Novel single-resistance-controlled- oscillator configuration using current feedback amplifiers’, IEEE Trans. Circuits Syst. I: Fundamental Theor. Appl., 1996, 43, (8), pp. 698-700.
 
[5]  Senani, R., Gupta, S.S.: ‘Synthesis of single-resistance-controlled oscillators using CFOAs: simple state-variable approach’, IEE Proc. Circuits Devices Syst., 1997, 144, (2), pp. 104-106
 
[6]  Gupta, S.S., Senani, R.: ‘State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs’, IEE Proc. Circuits Devices Syst., 1998, 145, (2), pp. 135-138.
 
[7]  Gupta, S.S., Senani, R.: ‘State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs: additional new realizations’, IEE Proc. Circuits Devices Syst., 1998, 145, (6), pp. 415-418.
 
[8]  Gupta, S.S, Senani, R.: ‘Realisation of current-mode SRCOs using all grounded passive elements’, Frequenz, 2003, 57, (1-2), pp. 26-37.
 
[9]  Gupta, S.S., Senani, R.: ‘Grounded-capacitor SRCOs using a single differential difference complementary current feedback amplifier’, IEE Proc.-Circuits Devices Syst., 2005, 152, (1), pp. 38-48.
 
[10]  Gupta, S.S., Sharma, R.K., Bhaskar, D.R., Senani, R. ‘Synthesis of sinusoidal oscillators with explicit-current-output using current feedback op-amps’, WSEAS Tran. Electron., 2006, 3, (7), pp. 385-388.
 
[11]  Gupta, S.S., Sharma, R.K., Bhaskar, D.R., Senani, R. ‘Sinusoidal oscillators with explicit current output employing current-feedback op-amps’, Int. J. Circ. Theor. Appl., 2010, 38, (2), pp. 131-147.
 
[12]  Gupta, S.S., Bhaskar, D.R., Senani, R., Singh, A.K. ‘Synthesis of linear VCOs: the state-variable approach’, J. Circ. Syst. Comp., 2011, 20, (4), pp. 587-606.
 
[13]  Gupta, S.S., Bhaskar, D.R., Senani, R. ‘Synthesis of new single CFOA-based VCOs incorporating the voltage summing property on analog multipliers’, ISRN Electron., 2012, pp. 1-8.
 
[14]  Singh, B., Singh, A.K., Senani, R. ‘Realization of SRCOs: another new application of DDAs’, Analog Integr. Circ. Sig. Process, 2013, 76, (2), pp. 267-272.
 
[15]  Sharma, R.K., Arora, T.S., Senani, R. ‘On the realisation of canonic single-resistance-controlled oscillators using third generation current conveyors’, IET Circ. Devices Syst., 2017, 11, (1), pp. 10-20.
 
[16]  Güneş, E.O., Toker, A.: ‘On the realization of oscillators using state equations’, Int. J. Electron. Commun. (AEÜ), 2002, 56, (5), pp. 317-326.
 
[17]  Bhaskar, D.R. ‘Single resistance controlled sinusoidal oscillator using single FTFN’, Electron. Lett., 1999, 35, (3), pp. 190.
 
[18]  Bhaskar, D.R., Senani, R. ‘New CFOA-based single-element-controlled sinusoidal oscillators’, IEEE Trans. Instrumentation and Measurement, 2006, 55, (6), pp. 2014-2021.
 
[19]  Tangsrirat, W., Pisitchalermpong, S. ‘CDBA-based quadrature sinusoidal oscillator’, Frequenz, 2007, 61, (3-4), pp. 102-104.
 
[20]  Senani, R., Bhaskar, D.R., Singh, A.K.: ‘Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks’ (Springer International Publishing, Switzerland, 2016).
 
[21]  Fabre, A., Saaid, O., Wiest, F., Boucheron, C.: ‘Current controlled bandpass filter based on translinear conveyors’, Electron. Lett., 1995, 31, (29), pp. 1727-1728.
 
[22]  Fabre, A., Saaid, O., Wiest, F., Boucheron, C.: ‘High frequency applications based on a new current controlled conveyor’, IEEE Tran. Circuits Syst., 1996, 43, (2), pp. 82-91.
 
[23]  Kiranon, W., Kesorn, J., Wardkein, P. ‘Current controlled oscillator based on translinear conveyors’, Electron. Lett., 1996, 32, (15), pp. 1330-1331.
 
[24]  Kiranon, W., Kesorn, J., Sangpisit, W., Kamprasert, N. ‘Electronically tunable multifunctional translinear-C filter and oscillator’, Electron. Lett., 1997, 33, (7), pp. 573-574.
 
[25]  Abuelmáatti, M.T., Tasadduq, N.A.: ‘A novel current- controlled oscillator using translinear current conveyors’, Frequenz, 1998, 52, (5-6), pp.123-124.
 
[26]  Türköz, S., Minaei, S. ‘A new current-controlled sinusoidal oscillator using the current controlled conveyor’, Frequenz, 2000, 54, (5-6), pp. 132-133
 
[27]  Maheshwari, S. ‘Electronically tunable quadrature oscillator using translinear conveyors and grounded capacitors’, Active and Passive Elec. Comp., 2003, 26, pp. 193-196
 
[28]  Fongsamut, C., Anuntahirunrat, K., Kumwachara, K., Surakampontorn, W. ‘Current-conveyor-based single-element-controlled and current-controlled sinusoidal oscillators’, Int. J. Electron., 2006, 93, (7), pp. 467-478.
 
[29]  Maheshwari, S.: ‘A new current-mode current-controlled all-pass section’, J. Circuits and Systems and Computers, 2007, 2, pp. 181-189.
 
[30]  Maheshwari, S., Khan, I.A. ‘Novel voltage/current mode translinear-C quadrature oscillator’, J. Active and Passive Electron. Devices, 2007, 2, pp. 235-239.
 
[31]  Maheshwari, S. ‘High performance mixed-mode quadrature oscillator’, J. Active and Passive Electron. Devices, 2007, 2, pp. 223-226.
 
[32]  Maheshwari, S.: ‘Grounded capacitor CM-APS with high output impedance’, J. Circuits, Systems and Computers, 2007, 16, (4), pp. 567-576.
 
[33]  Pandey, N., Paul, S.K. ‘A novel electronically tunable sinusoidal oscillator based on CCCII (-IR)’, J. Active and Passive Electron. Devices, 2008, 3, pp. 135-141.
 
[34]  Siripruchyanun, M., Jaikla, W. ‘Cascadable current-mode biquad filter and quadrature oscillator using DO-CCCIIs and OTA’, Circuits and System Signal Process, 2009, 28, pp. 99-110.
 
[35]  Yasin M.Y., Gopal, B. ‘High frequency oscillator design using a single 45nm CMOS current controlled current conveyor (CCCII+) with minimum passive components’, Circuits and Systems, 2011, 2, pp. 53-59.
 
[36]  Hassen, N., Ettaghzouti, T., Besbes, K. ‘High-performance second-generation controlled current conveyor CCCII and high frequency applications’, Int. J. Electrical, Computer, Energetic, Electronic and Communication Engineering, 2011, 5, (12), pp. 1759-1768.
 
[37]  Lahiri, A. ‘Deriving (MO) (I) CCCII based second-order sinusoidal oscillators with non-interactive tuning laws using state variable method’, Radioengineering, 2011, 20, pp. 349-353.
 
[38]  Çiçekli, H., Gökçen, A. ‘Composite second generation current conveyor based tunable MOS-C quadrature sinusoidal oscillator design and comparative performance analysis’, WSEAS Trans. Circuits and Systems, 2015, 15, pp. 489-494.
 
[39]  Senani, R., Bhaskar, D.R., Singh, A.K. ‘Current Conveyors: variants, applications and hardware implementations’, (Springer International Publishing, Switzerland, 2015).
 
[40]  Bhaskar, D.R., Prasad, D., Senani, R., Jain, M.K., Singh, V.K., Srivastava, D.K. ‘New fully-uncoupled current-controlled sinusoidal oscillator employing grounded capacitors’, American J. Electrical and Electronic Engineering, 2016, 4, (3), pp. 81-84.
 
[41]  Frey, D.R. ‘Log-domain filtering: an approach to current-mode filtering’, IEE Proc. G Circuits, Devices Syst., 1993, 140, (6), pp. 406-416.
 
[42]  Yuce, E., Kircay, A., Tokat, S. ‘Universal resistorless current-mode filters employing CCCIIs’, Int. J. Circ. Theor. Appl., 2008, 36, pp. 739-755.
 
[43]  Bhushan, M. and Newcomb, R. W. ‘Grounding of capacitors in Integrated Circuits’, Electron. Lett., 1967, 3, pp 148-149.
 
[44]  Newcomb, R. W. ‘Active Integrated Circuit Synthesis’, Prentice-Hall, 1968.