American Journal of Clinical Medicine Research
ISSN (Print): 2328-4005 ISSN (Online): 2328-403X Website: http://www.sciepub.com/journal/ajcmr Editor-in-chief: Dario Galante
Open Access
Journal Browser
Go
American Journal of Clinical Medicine Research. 2018, 6(2), 24-34
DOI: 10.12691/ajcmr-6-2-2
Open AccessReview Article

A Review of Signaling Pathways and the Genetics Involved in the Development of Type 2 Diabetes: Investigating the Possibility of a Vaccine and Therapeutic Interventions to Prevent Diabetes

Sabitha Vadakedath1, Venkataramana Kandi2, , Venkata Bharat Kumar Pinnelli3 and Vikram Godishala4

1Department of Clinical Biochemistry, Chalmeda Anandrao Institute of Medical Sciences, Karimnagar, Telangana, India

2Department of Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, Telangana, India

3Department of Biochemistry, Vydehi Institute of Medical Sciences and Research Centre, #82, EPIP Area, Nallurhalli, Whitefield, Bangalore – 560066, Karnataka, India

4Department of Biotechnology, Vaagdevi Degree and PG College, Warangal, Telangana, India

Pub. Date: May 30, 2018

Cite this paper:
Sabitha Vadakedath, Venkataramana Kandi, Venkata Bharat Kumar Pinnelli and Vikram Godishala. A Review of Signaling Pathways and the Genetics Involved in the Development of Type 2 Diabetes: Investigating the Possibility of a Vaccine and Therapeutic Interventions to Prevent Diabetes. American Journal of Clinical Medicine Research. 2018; 6(2):24-34. doi: 10.12691/ajcmr-6-2-2

Abstract

Diabetes mellitus is a chronic debilitating non-communicable disease prevalent throughout the world. There are two different types of diabetes; the type 1 diabetes usually presents in children and young adults, and the type 2 diabetes, a most frequent age-related condition usually noted among the adults aged over 40 years. The type 1 diabetes results due to an immunological reaction against insulin and the insulin secreting cells. The type 2 diabetes can occur due to various factors that include genetic predisposition, lifestyle disorders, insulin resistance, and lack of adequate insulin production. Since lifestyle management is an adjustable risk factor for diabetes, may people with genetic predisposition could delay the onset of clinical diabetes. Further there is an increasing need to understand the genetics behind the signaling pathways involved in the development of type 2 diabetes, which could pave the way for formulating, and implementing therapeutic, and preventive strategies.

Keywords:
diabetes mellitus non-communicable disease type 1 diabetes type 2 diabetes genetic predisposition insulin resistance signaling pathways

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Mokdad AH, Bowman BA, Ford ES, Vinicoor F, Marks JS et al.,. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001; 286: 1195-1200.
 
[2]  Venkataramana R, Nanda NC, Baweja G, Parikh N, Bhatia V. Prevalence of diabetes mellitus and related conditions in Asian Indians living in the United States. Am J Cardiol. 2004l; 94: 977-980.
 
[3]  Herder C, Roden M. “Genetics of type2 diabetes: pathophysiologic and clinical relevance”. European Journal of clinical investigation. 2011; 41(6): 679-92.
 
[4]  Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring study. Diabetes. 2000; 49(12): 2201-7.
 
[5]  Doria A, Patti ME, Kahn CR. The emerging genetic architechture of type 2 diabetes. Cell Metab. 2008; 8(3): 186-200.
 
[6]  Hattersley AT, McCarthy MI. What makes a good genetic association study?. Lancet. 2005; 366(9493): 1315-23.
 
[7]  Hopper JL, Bishop DT, Easton DF. Population-based family studies in genetic epidemiology. Lancet. 2005; 366(9494): 1397-406.
 
[8]  McCarthy MI. Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep 2003; 3(2): 159-67.
 
[9]  Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Metanalysis of genetic association studies support a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33(2): 177-82.
 
[10]  Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001; 29(3): 306-9.
 
[11]  Waterfield T, Gloyn AL. Monogenic beta cell dysfunction in children: clinical phenotypes, genetic etiology and mutational pathways. Pediatric Health.2008; 2(4): 517-32.
 
[12]  O’Rahilly S. Human genetics illuminates the paths to metabolic disease. Nature.2009; 462(7271): 307-14.
 
[13]  Vaxilliare M,Froguel P. Genetic basis of maturity-onset diabetes of the young. Endocrinol Metab Clin North Am 2006; 35(2): 371-84.
 
[14]  Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273(5281): 1516-7.
 
[15]  Nusse ROel, Varmus, Harold E. Wnt genes. Cell. 1992; 69(7): 1073-87.
 
[16]  Komya Y, Habas R. Wnt signal transduction pathways. Organogenensis. 2008; 4(2): 68-75.
 
[17]  Kurayoshi M, H Yamamoto S Izumi, A Kikuchi. Post translational palmitoylation and glycosylation of Wnt-s are necessary for its signaling. Biochemical Journal. 2007; 402(3): 515-523.
 
[18]  Logan C W, Nusse R. “The Wnt signaling pathway in development and disease”. Cell Dev Bio. 2004; 20: 781-810.
 
[19]  Mac Donald, Bryan T, Tamai, Keiko, He, Xi. Wnt / beta catenin signaling: components, mechanisms and diseases. Developmental cell. 2009; 17(1): 9-26.
 
[20]  Stall FJ, Clevers H. TCF/Lef transcription factors during T cell development: unique and overlapping functions. The Hematology Journal. 2000; 3-6.
 
[21]  Klaus A, Birchmeier W. Wnt signaling and its impact on development and cancer. Nature Reviews Cancer. 2008; 8(5): 387-398.
 
[22]  Habas, Raymond, Dawid, Igor B. Dishevelled and Wnt signaling: is the nucleus the final frontier?. Journal of Biology. 2005; 4(1): 2.
 
[23]  Sugimura, Ryohichi and Linheng Li. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth defects Research Part C: Embryo Today Reviews. 90.4. 2010; 243-256.
 
[24]  Welters, HJ, RN Kulkarni. Wnt signaling: relevance to beta cell biology and diabetes. Trends in Endocrinology & metabolism. 2008; 19(10): 349-355.
 
[25]  Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ et al.,. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes & Development. 2010; 24(14): 1507-18.
 
[26]  Zhai L, SW Ballinger, JL Messina. Role of reactive oxygen species in injury-induced insulin resisitance. Molecular Endocrinology. 2011; 25(3): 492-502.
 
[27]  Grant, Struan FA, Thorleifsson, Gudmar, Reynisdolttir, Inga et al.,. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genetics. 2006; 38(3): 320-323.
 
[28]  Jin T. The Wnt signaling pathway and diabetes mellitus. Diabetologia. 2008; 51(10): 1771-80.
 
[29]  Castrop J, Van Norren K, Clevers H. “ A gene family of HMG-box transcription factors with homology to TCF-1”. Nucleic Acids Res. 1992; 20(3): 611.
 
[30]  Komiya Y, Habas R. “Wnt signal transduction pathways”. Cell Dev Bio. 2004; 20: 781-810.
 
[31]  SampietroJ, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W. “Crystal structure of a beta-catenin/BCL9?Tcf4 complex”. Mol Cell. 2006; 24(2): 293-300.
 
[32]  Jin T, Liu L. “The Wnt signaling pathway effector TCF7L2 and type2 diabetes mellitus”. Mol Endocrinol.2008; 22(11): 2383-92.
 
[33]  Zhang C, Bao W, Rong Y, Yang H, Bowers K et al.,. “Genetic variants and the risk of gestational diabetes melliteus: A systematic review. Human Reproduction Update. 2013; 19(4): 376.
 
[34]  Slattery ML, Folsom AR, Wolff R, Herrick J, Caan BJ, et al.,. “Transcription factor 7-like 2 polymorphism and colon cancer”. Cancer Epidemiol Biomarkers Prev. 2008; 17(4): 978-82.
 
[35]  Hazra A, Fuchs CS, Chan AT, Giovannucci EL, Hunter DJ, et al.,. “Association of the TCF7L2polymorphism with colorectal cancer and adenoma risk”. Cancer Causes Control. 2008; 19(9): 975-80.
 
[36]  Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G et al.,. Positive regulation of the peroxisomal beta oxidation pathway by fattyacids through activation of peroxisome proliferators-activated receptors(PPAR). Biol cell. 2993; 77(1): 67-76.
 
[37]  O’Flaherty JT, Rogers LC, Paumi CM, Hantgan RR, Thomas LR, at al.,. 5-Oxo-ETE analogs and the proliferation of cancer cells. Biochim Biophys. Acta. 2005; 1736(3): 228-36.
 
[38]  Krishnan A, Nair SA, Pillai MR. Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med. 2007; 7(6): 532-40.
 
[39]  Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, at al.,. Honokiol: a non-adipogenic PPAR gamma agonist from nature. Biochim Biophys Acta. 2013; 1830(10): 4813-9.
 
[40]  Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, et. al.,. Natural product agonists of peroxisome proliferators-activated receptor gamma(PPARG): a review. Biochem Pharmacol. 2014; 92(1): 73-89.
 
[41]  Jia G, Fy Y, Zhao X, Dai Q, Zheng G, et al.,. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12): 885-7.
 
[42]  Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al.,. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316(5826): 889-94.
 
[43]  Nicholas JL, N6-methyladenosine in maize poly(A)-containing RNA. Plant Science Letters. 1979; 15(4): 357-61.
 
[44]  Kennedy TD, Lane BG, Wheat embryo ribonucleates XIII. Methyl-substituted nucleoside constitutents and 5’-terminal dinucleotide sequences in bulk poly(AR)-rich RNA from imbibing wheat embryos. Can J Biochem. 1979; 57(6): 927-31.
 
[45]  Aloni Y, Dhar R, Khoury G. Methylation of nuclear simian virus 40 RNAs. J Virol. 1979; 32(1): 52-60.
 
[46]  Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, et al.,. Comprehensive Analysis of mRNA methylation reveals enrichment in 3’UTRs and near stop codons. Cell. 2012; 149(7): 1635-46.
 
[47]  Sandholt CH, Hansen T, Pedersen O. Beyond the fourth wave of genome-wide obesity association studies. Nutr Diabetes. 2012; 2: e37.
 
[48]  Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J Alzheimers Dis. 2011; 23(3): 461-9.
 
[49]  "Entrez Gene: KCNJ11 potassium inwardly-rectifying channel, subfamily J, member 11".
 
[50]  Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, et al.,. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003; 52(2): 568-72.
 
[51]  Pinney S E, MacMullen C, Becker S, Lin Y W, Hanna C, Thornton P, et al.,. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest. 2008; 118: 2877-2886.
 
[52]  Smith AJ, Taneja TK, Mankouri J, Sivaprasadarao A (2007). Molecular cell biology of KATP channels: implications for neonatal diabetes. Expert Rev Mol Med. 9 (21): 1-17.
 
[53]  Larsson C, Lardelli M, White I, Lendahl U. The human NOTCH1, 2 and 3 genes are located at chromosomes positions 9q34, 1p13-p11, and 19p13.2-p13.1 in regions of neoplasia associated translocation. Genomics. 1994; 24(2): 253-8.
 
[54]  Sh Shimizu K, Chiba S, Kumano K, Hosoya N,Takahashi T et al.,. Mouse jagged 1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem. 1999; 274(46): 32961-9.
 
[55]  Shimizu K, Chiba S, Hosoya N, Kumano K, Saioto T, Kurokawa M et al.,. Binding of delta 1, jagged 1, and jagged 2 to Notch1 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol. Cell. Biol. 2000; 20(18): 6913-22.
 
[56]  Espinosa L, Ingles – Esteve J, Aguilera C, Bigas A. Phosphorylation by glucogen synthase kinase-3 beta down-regulates Notch activity, a link for notch and Wnt pathways. J Biol Chem. 2003; 278(34): 32227-35.
 
[57]  Shimizu K, Chiba S, Saito T, Kumano K, Takahashi T, et al.,. Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. J Biol Chem. 2001; 276(28): 25753-8.
 
[58]  Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D et al.,. Mutations in Notch2 cause Hajdu-cheney syndrome, a disorder of severe and progressive bone loss. Nature Genentics. 2011; 43(4): 303-5.
 
[59]  Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J et al.,. Mutations in NOTCH 2 in families with Hajdu-chenoy syndrome. Hum Mutat. 2011; 32(10): 1114-7.
 
[60]  Isidor B, Lindenbaum P, Pichan O, Bezieau S, Dina C et al.,. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nature Genetics. 2011; 43(4): 306-8.
 
[61]  Osman AA, Saito M, Makepeace C, Permutt MA, Schlesinger P, et al.,. Wolframin exression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem. 2003; 278(52): 52755-62.
 
[62]  Diria A, Patti ME, Kahn CR. The emerging genetic architecture of type2 diabetes. Cell Metab. 2008; 8(3): 186-200.
 
[63]  Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, et al.,. A gene encoding a transmembrane protein is mutated in patients with dibetes melliteus and optic atrophy (Wolfram syndrome). Nat Genet. 1998; 20(2): 143-8.
 
[64]  Berry V, Gregory-Evans C, Emmett W, Waseem N, Raby J et al.,. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humns. Eur J Hum Genet. 2013; 21(12): 1356-60.
 
[65]  Entrez gene: IGFBP2 insulin-like growth factor 2 mRNA binding protein2.
 
[66]  Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, et al.,. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol. 1999; 19(2): 1262-70.
 
[67]  Rutter GA et al.,. Think zinc:new roles for zinc in the control of insulin secretion Islets 2010; 2(1): 49-50.
 
[68]  Dupis J et al.,. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics. 2010; 42(2): 105-16.
 
[69]  Strawbridge R J et al.,. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type2 diabetes. Diabetes. 2011; 60(10): 2624-34.
 
[70]  Morris A P et al.,. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics. 2012; 44(9): 981-90.
 
[71]  Flannick, Jason et al.,. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics. 2014.
 
[72]  Adams MD,Soares MB, Kerlavage AR, Fields C, Venter JC. Rapid cDNA sequencing from a directionally cloned human infant brain cDNA library. Nat Genet. 1993; 4(4): 373-80.
 
[73]  Manolio TA, Guttmacher, Alan E, Manolio, Teri A. Genome wide association studies and assessment of the risk of disease. N Engl J Med. 2010; 363(2): 166-176.
 
[74]  Bedford FK, Ashworth A, Enver T, Wiedemann LM. HEX: a novel homeobox gene expressed during haemotopoiesis and conserved between mouse and human. Nucleic Acids Res. 1993; 21(5): 1245-9.
 
[75]  Denson Lee; Karpen, Saul; Bogue, Clifford; Jacob,Harris. Divergent homeobox gene Hex regulates promoter of the Na+-dependent bileacid cotransporter. American Journal of physiology-Gastrointestinal and Liver physiology. 2000; 279(2): 347-355.
 
[76]  Brickman, Joshua; Jones,C; Clements, Melanie; Smith, J; Beddington, Rosa. Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organizer function. Development. 2000; 127: 2303-315.
 
[77]  Martinez Barbera, Juan; Clements, Melanie; thjoman, Paul; Rodriguez, Tristen; Meloy et al.,. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development. 2000; 127: 2433-45.
 
[78]  Topcu Z, Mack DL, Hromas RA, Borden KL. The promyelocutic leukemia protein PML interacts with the proline-rich homeodomain protein PRH: a RING may link hematopoiesis and growth control. Oncogene. 1999; 18(50): 7091-100.
 
[79]  Liao, Wyne Ho, Chi-Yip;Yi, Lin Yan, Postlewait, John Stainier, Didier. Hhex and Scl function n parallel to regulate early endothelial and blood differentiation in zebrafish. Development. 2000; 127: 4303-4313.
 
[80]  Hallaq, Hafia Pinter, Emese Enciso, Josephine McGrath James Zeiss, Caroline Brueckner Martina et al.,. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development. 2004; 131: 5197-5209.
 
[81]  Takeda Y, Jetten AM. Prospero-related homeobox 1 (Prox1) functions as a novel modulator of retinoic acid-related orphan receptors α- and γ-mediated transactivation. Nucleic Acids Res. 2013; 41: 6992-7008.
 
[82]  Song K. H, Li T, Chiang J. Y. Prospero – related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4 alpha that regulates the cholesterol 7 – alpha hydroxylase gene. Biol chem.. 2006.
 
[83]  Steffensen, K.R., Holter, E., Båvner, A., Nilsson, M., Pelto-Huikko, M., Tomarev, S., Treuter, E. Functional conservation and interaction between a homeodomain cofactor and a mammalian FTZF -1 homologue. EMBO Rep. (2004)[Pubmed].
 
[84]  Jetten AM, Kang HS, Takeda Y. Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Front Endocrinol. 2013; 4: 1-8.
 
[85]  Harvey NL, Srinivasan S, Dillard ME, Johnson NC, Witte MH, Boyd K. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet. 2005; 37: 1072-1081.
 
[86]  Laerm, A., Helmbold, P., Goldberg, M., Dammann, R., Holzhausen, H.J., Ballhausen, W.G. Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas of the bilary system. J Hepatol. 2001.
 
[87]  Goto K, Kondo H (Sep 1993). "Molecular cloning and expression of a 90-kDa diacylglycerol kinase that predominantly localizes in neurons". Proc Natl Acad Sci U S A 90 (16): 7598-602.
 
[88]  Kaneko YK1, Ishikawa T. Diacylglycerol Signaling Pathway in Pancreatic β-Cells: An Essential Role of Diacylglycerol Kinase in the Regulation of Insulin Secretion. Biol Pharm Bull. 2015; 38(5): 669-73.
 
[89]  Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda) 2005; 20 (6): 408-16.
 
[90]  Anna Jonasson, Bo Isomaa, Tiinamaija Tuomi, Jalal Taneera, Albert Salehi, et al.,. A Variant in the KCNQ1 Gene Predicts Future Type 2 Diabetes and Mediates Impaired Insulin Secretion. American Diabetes Association. 2009; 58(10):2409-13.
 
[91]  CDKN2A. Genetics Home Reference. National Library of Medicine. 2015.
 
[92]  Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007: 316: 1336-1341.
 
[93]  Szpirer C, Riviere M, Cortese R, Nakamura T, Islam MQ et al.,. Chromosomal localization in man and rat of the genes encoding liver-enriched transcription factors C/EBP, DBP,HNF1/LFB-1 and of the hepatocyte growth factor/scatter factor gene (HGF). Genomics. 1992; 13(2): 293-300.
 
[94]  Ban N, Yamada Y, Someya Y, Miyawaki K, Ihara Y, Hosokawa M, et al.,. Hepatocyte nuclear factor-1alpha recfruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes. 2002; 51(5): 1409-18.
 
[95]  Vaxillaire M, Boccio V,Philippi A, Vigouroux C, et al.,. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nature Genetics. 1995; 9(4): 418-23.
 
[96]  Bioulac-Sage P,BlancJF, Rebouissou S, Balabaud C et al.,. Genotype phenotype classification of hepatocellular adenoma. World Journal Of Gastroenterology. 2007; 13(19): 2649-54.
 
[97]  Kobel M, Kalloger SE, Carrick J, Huntsman D, Asad H, Olivia E et al.,. A limited panel of immunomarkers can reliabily distinguish between clear cell and high grade serous carcinoma of the ovary. The American Journal of Surgical Pathology. 2009; 33(1): 14-21.
 
[98]  Stefan S Fanjans, Graem I Bell, Kenneth S Polonsky. Molecular mechanisms and clinical pathophysiology of Maturity-Onset Diabetes of the Young. N Engl J Med. 2001; 345: 971-980.
 
[99]  Hepatocyte nuclear factor 1beta associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol. 2016; 27(2); 345-53.
 
[100]  Richa Saxena, Marie-France, Hivert, Richard M Watanabe. Genetic variation in GIPR influences the glucose and insulin responses toan oral glucose challenge. Nature genetics. 2010; 42(2): 142-148.
 
[101]  Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K et al.,. Glucose intolerance caused by a defect in the entero-insularaxis: astudyin gastric inhibitory polypeptide receptor knockout mice. Proc Nat Acad Sci. 1999; 96: 14843-14847.
 
[102]  Entrez gene: HNF4A hepatocyte nuclear factor 4 alpha.
 
[103]  Yamagata K. Roles of HNF1A and HNF4A in pancreatic beta cells: lessons from amonogenic forms of diabetes (MODY). Vitamins and Hormones. 2014. 95:407-23.
 
[104]  Entrez Gene: MTNR1B melatonin receptor 1 B.
 
[105]  Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, et al.,. Variants in MTNR1B influence fasting glucose levels. Nature Genetics. 2009; 41(1): 77-81.
 
[106]  Gene that regulates glucose levels and increases risk for diabetes identified. ScienceDaily.2008-06-08. Retrieved 2009-01-18.
 
[107]  Staiger H, Machicao F, Schafer SA, Kiirchhoff K, Kantartzis K, et al.,. Polymorphisms within the novel type 2 diabetes risk locus MYNR1B determine beta – cell function. PLOS ONE. 2008; 3(12): e3962.
 
[108]  Zeng L, Fagotto F, Zhang T et al.,. The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axisformation. Cell. 1997; 90: 181-92.
 
[109]  Y Jia, L Yuan, W Hu, Y Luo, L Suo, Y Wang, et al.,. Zinc finger BED domain containing 3 (Zbed3)is a novel secreted protein associated with insulin resistance in humans. Journal of Internal Medicine. 2014; 275(5): 522-533.
 
[110]  Zhou B, Wei F, Y Kanai, N Fujimura, A Kaitsuka, T Tomizawa . Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by acoding -independent mechanismin human. HumMolec. Genet. 2014; 23: 4639-4650.
 
[111]  Wei F Y et al.,. Cdk5 – dependent regulation of glucose – stimulated insulin secretion. Nat Med. 2005; 11: 1104-8.
 
[112]  Ohara – Imaizumi, M et al,.,. Deletion of CDKAL1 affects mitochondrial ATP generation and first – phase insulin exocytosis. PLOS One. 2010(5). E15553.
 
[113]  Kim Y S, Nakanishi G, Lewandoski M, Jetten A M. GLIS3, a novel member of the GLIS subfamily of kruppel – like zinc fingerproteins with repressorand activation functions. Nucleic Acids Res. 2003; 31: 5513-25.
 
[114]  Kang H S, BeakJ Y, KimY S, Herbert R, Jetten A M. Glis3 is associated with primary ciliaand Wwtr1/TAZand implicated in polycystickidney disease. 2009; 29: 2556-2569.
 
[115]  Dela IglesiaN, Veiga-da-Cunha M,Van Schaftingen E,Guinovart JJ,FerrerJC,et al.,. Glucokinase regulatory protein is essential for the proper subcellular localization of liver glucokinase.FEBS Lett.1999; 456(2): 332-8.
 
[116]  Shiota C, Coffey J,Grimsby J, Grippo JF, Magnuson MA, Coffey,Grimsby, Grippo et al.,. Substrate induced nuclear export and peripheral compartmentalization of hepaticglucokinase correlates with glycogen deposition. Int J Exp Diabetes Res. 2001; 2(3): 173-86.
 
[117]  Gracia-Herrero CM,Galan M, Vincent O,et al.,. Functional analysis of human glucokinase gene mutations causing MODY2: exploring the regulatory mechanisms of glucokinase activity. Diabetologia .2007; 50(2): 325-33.
 
[118]  Grimsby J, Coffey JW, Dvorozniak MT, et al.,. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem.2000;275(11):7826-31.
 
[119]  Daly R J, Sanderson G M, JanesP W, Sutherland RL. Cloning and characterization of GRB14, a novel member of theGRB7 gene family.J BiolChem. 1996; 271(21): 12502-510.
 
[120]  King C C, Newton A C, The adapter protein Grb14 regulates the localization of 3-phosphoinositide-dependentkinase-1. J BiolChem. 2004; 279: 37518-527.
 
[121]  Depetris R S, Wu J, Hubbard S R. Structural and functional studies of the Ras-associating andpleckstrin-homology domains of Grb10and Grb 14. NatStruct. Mol. Biol. 2009; 16: 833-839.
 
[122]  Hemming R, R Agatep, KBadiani, et al.,. Human growth factor receptor bound 14binds the activated insulin receptor and alterstheinsulin – stimulated tyrosine phosphorylationlevels of multiple proteins. Biochem Cell Biol.2001; 79: 21-32.
 
[123]  Entrez Gene: BCL11A B cell CLL/Lymphoma 11 A (zincfingerprotein).
 
[124]  Saiki Y, Yamazaki Y, YoshidaM, Katoh O, Nakamura T.Human EV19,a homologue of the mouse myeloidleukemia gene, is expressed in the hematopoietic progenitors and down regulated during myeloiddifferentiation of HL60 cells. Genomics. 2000; 70(3): 387-91.
 
[125]  Walid T Khaled, Song Choon Lee, John Stingl,Xiondfeng Chen, et al.,. BCL11A is a triple negative breast cancer gene with critical functionsin stem and progenitor cells. Nature Communications. 2014; 6: 5987.
 
[126]  Xiaomu Kong, Xuelian Zhang, Xiaoyan Xing, Bo Zhang, Jing Hong, Wenying Yang, et al.,. The association of type 2 diabetes loci identified in genome – wide association studies with metabolic syndrome and its components in a Chinesepopulation with type 2 diabetes. PLOS ONE. 2015; 10(11): e0143607.
 
[127]  Takai T, Nishita Y, Iguchi – Ariga S M, and Ariga H. Molecular cloning of MSSP-2, a c- myc gene single-strand binding protein: characterization of binding specificity and DNA replication activity. Nucleic Acids Res. 1994; 22: 5576-5581.
 
[128]  Shoelson S E, Lee J, and Goldfine A B. Inflammation and insulin resisitance. J Clin Invest. 2006; 116: 1793-1801.
 
[129]  Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al.,. structure of the insulin receptor substrate IRS1 defines a unique signal transduction protein. Nature.1991; 352(6330): 73-7.
 
[130]  Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. The Journal of Biological Chemistry. 2002; 277(2): 1531-7.
 
[131]  Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee Av. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle. 2007; 6(6): 705-13.
 
[132]  Kloth et al.,. Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue.BMC ClinicalPathology. 2011; 11: 13.
 
[133]  Annemarie M, Simonis-Bik, Giel Nijpels, Timon W Van Haeften, Jeanine J,et al.,. CDC123/CAMKID, THADA, ADAMTS9, BCL11A and MTNR1B affect different aspects of pancreaticbeta cell function. Diabetes. 2010; 59(1): 293-301.
 
[134]  Grarup N, Andersen G, Krarup NT, et al. Association Testing of Novel Type 2 Diabetes Risk Alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 Loci With Insulin Release, Insulin Sensitivity, and Obesity in a Population-Based Sample of 4,516 Glucose-Tolerant Middle-Aged Danes. Diabetes. 2008;57(9):2534-2540.
 
[135]  Gong M, Castillo L, Redman R S, Garige M, Hirsch K, et al.,. Down – regulation of liver Galbeta1, 4GlcNAc alpha2,6 – Sialyltransferase gene by ethanol significantly correlates with alcoholic steatosis in humans. Metabolism 2008; 57: 1663-1668.
 
[136]  Hongye Ma, Lei Cheng, Keji Hao, Yanping Li, Xiaobo Song, Huimin Zhou, Li Jia Reversal Effect of ST6GAL 1 on Multidrug Resistance in Human Leukemia by Regulating the PI3K/Akt Pathway and the Expression of P-gp and MRP1. PLoS ONE. 2014; 9(1): e85113.
 
[137]  .Clark ME, Kelner GS, Turbeville LA, et al.,. ADAMTS9, a novel member of ADAM-TS/metallospondin gene family. Genomics. 2000; 67: 343-350.
 
[138]  Yoshina S et al.,. Identification of novel ADAMTS9 / GON-1 function for protein transport from ER to golgi. Mol. Biol. Cell.2012; 23(9): 1728-41.
 
[139]  Demirican K, et al., ADAMTS9 is synergistically induced by interleukin – 1 β(IL-1β) and tumor necrosis factor - ∞ in OUMS -27 chondrosarcoma cells and in human chondrocytes. Arthritis Rheum.2005; 52(5): 1451-60.
 
[140]  B Emaneulli, M Glondu, C Filloux, et al.,. The potential role of SOCS-3 in the interleukin-1-β induced desensitization of Insulin signaling in pancreatic beta cells. Diabetes. 2004; 53(suppl 3): S97-S103.
 
[141]  Prentiki M Matschinsky FM. Calcium and cAMP and phospholipid – derived messengers in coupling mechanisms of insulin secretion. Physiol Rev.1987; 67: 1185-1248.
 
[142]  Ding Q, Gros R, Gray ID, Taussig R, et al.,. Raf activation of adenyl cyclase; isoform – selective regulation. Mol Pharmacol. 2004; 66: 921-928.
 
[143]  Mancias JD, Goldberg J. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell. 2007; 26(3):403-414.
 
[144]  Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta cell failure and diabetes. Endocr Rev.2008; 29: 317-333.
 
[145]  Michele Milili, Laurent Gauthier. A new Groucho TLE4 protein may regulate the repressive activityof pax5 in human B lymphocytes. Immunology. 2002; 106(4): 447-455.
 
[146]  Cai Y, Brophy PD, Levitan I, Stifani S, et al.,. Groucho suppresses Pax2 transactivation by inhibitiob of JNK-mediated phosphorylation. EMBO J, 2003; 15: 22(20): 5522-9.
 
[147]  Yong Hee Lee, Jodel Giraud, Roger J Davis, et al.,. c-JUN N-terminal Kinase (JNK) mediates feed back inhibition of the insulin signaling cascade. J Biol. Chem. 2003; 278: 5(31): 2896-2902.
 
[148]  T Sai F-J, Yang C-f, Chen C-C, Chuang L-M, Lu C-H, et al.,. A genome – wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLOS Genet. 2010; 6(2): e1000847.
 
[149]  Jones JR, Barrick C, Kim KA, Lindner J, et al.,. Deletion of PPAR-gamma in adipose tissues of mice protects against high fat diet – induced obesity and insulin resistance. Proc Natl Acad Sci. 2005; 102(17): 6207-12.
 
[150]  Yng – Tay Chen, Wei – De Lin, Wen – Lin Liao, et al.,. PTPRD silencing by DNA hypermethylation decreases insulin receptor signaling and leads to type 2 diabetes. Oncotarget. 2015; 6(15): 12997-13005.
 
[151]  Miura K, Jacques K M, Stauffer S, Kubosaki A, Zhu K, Hirsch D S, et al.,. ARAP1: a point of convergence for Arf and Rho signaling. Mol. Cell. 2002; 9: 109-119.
 
[152]  Baschieri, F., & Farhan, H. (2012). Crosstalk of small GTPases at the Golgi apparatus. Small GTPases. 2012; 3(2), 80-90.
 
[153]  Jennifer R Kulzer, Michael L. Stitzel, Mario A Morken, Jeroen R Huyghe, Christian Fuschsberger. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014; 94(2): 186-197.
 
[154]  Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, et al.,. The cysteine – rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphor ionositol 4,5 bisphosphate in plasma membranes. Mol. Cell. Biol. 2002; 22(22): 7953-66.
 
[155]  Sonya G Fonseca, Mariko Fukuma, Kathryn L Lipson, Linh X, Nguyen, et al.,. WFS1 is a novel component of unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta cells. Journal of biological chemistry. 2005; 280(47): 39609-39615.
 
[156]  Z Pappalardo. A whole genome RNA interference screen reveals a role for spry2 in insulin transcription and the unfolded protein response. Diabetes. 2017; 66(6): 1703-1712.
 
[157]  Denu JM, Dixon JE. A catalytic mechanism for the dual – specific phosphatases. Proc. Natl Acad Sci. USA. 1995; 92(13): 5910-4.
 
[158]  Dickinson RJ et al.,. Phosphorylation of the kinase interaction motif in mitogen – activated protein (MAP) kinase phosphatase - 4 mediates cross-talk between protein kinase A and MAP kinase signaling pathways. Journal of Biological Chemistry. 2011; 286: 44: 38018-38026.