American Journal of Civil Engineering and Architecture
ISSN (Print): 2328-398X ISSN (Online): 2328-3998 Website: http://www.sciepub.com/journal/ajcea Editor-in-chief: Mohammad Arif Kamal
Open Access
Journal Browser
Go
American Journal of Civil Engineering and Architecture. 2013, 1(6), 174-180
DOI: 10.12691/ajcea-1-6-7
Open AccessArticle

Determining the Contribution of Different Structural Layers of Asphalt Pavement System to Rutting Using Transverse Profile Analysis

Hussan S.1, , Kamal M. A.1, Khan M. B.2, Irfan M.2 and Hafeez I.1

1Department of Civil & Environmental Engineering, University of Engineering & Technology (UET), Taxila, Pakistan

2National Institute of Transportation, School of Civil & Environmental Engineering (SCEE), National University of Sciences & Technology (NUST), Islamabad, Pakistan

Pub. Date: November 21, 2013

Cite this paper:
Hussan S., Kamal M. A., Khan M. B., Irfan M. and Hafeez I.. Determining the Contribution of Different Structural Layers of Asphalt Pavement System to Rutting Using Transverse Profile Analysis. American Journal of Civil Engineering and Architecture. 2013; 1(6):174-180. doi: 10.12691/ajcea-1-6-7

Abstract

Rutting is one of the major distresses which cause hydroplaning and structural failures in a flexible pavement. The extent of damage depends upon the load induced and the strength of each pavement layer. Rutting can occur due to the failure of the subgrade, the base or at the wearing surface/ hot mixasphalt (HMA) layer(s).In order to take remedial measures, it is imperative to be cognizant of the contribution of each layer to ascertain the cause of underlying phenomena of rutting. This research study demonstrates the analysis of the pavement transverse surface profile that could be used to identify the layer responsible for the permanent deformation. Transverse surface profiling techniqueis easier, non-destructive, and economicalas compared to traditional methods of coring and trenching to examine underlying layers. A 300 meter section on National Highway (N-5) was selected exhibiting severe rutting to perform transverse profile analysis. Results of this study suggest that rutting at the selected site is mainly due to the shear failure of HMA layer. These results were also validated by field trenching on the test section. The study concluded that HMA layer should be removed and replaced with appropriately designed high performance mix specifications.

Keywords:
rutting hot mix asphalt rut depth transverse profile

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Parker, F., and Brown, E. R., A Study of Rutting of Albama Asphalt Pavements.Final Report Project Number ST 2019-9 Auburn University Highway Research Center, Auburn University, Alabama sponsored by The State of Alabama Highway Department Montgomery, Alabama., 1990.
 
[2]  Dawley, C.B., Hogewiede B. L., and Anderson, K. O., Mitigation of Instability Rutting of Asphalt Concrete Pavements in Lethbridge, Alberta, Canada.Journal of Association of Asphalt Paving Technologists, Vol. 59, Association of Paving Technologists, St. Paul, Minnesota., 1990: p. 481-508.
 
[3]  Lenngren, C.A., Some Approaches in Treating Automatically Collected Data on Rutting. Transportation Research Record: Journal of theTransportation Research Board, No. 1196, Transportation Research Board of the National Academies, Washington, D.C., 1988: p. pp. 20-26.
 
[4]  Gramling, W.L., Hunt, J. E., and Suzuki, G. S., Rational Approach to Cross-Profile and Rut Depth Analysis. Transportation Research Record: Journal of the Transportation Research Board, No. 1311, Transportation Research Board of the National Academies, Washington, D.C., 1991: p. 173-179.
 
[5]  Chen, D.H., Bilyeu, J., Walker, D., and Murphy, M., Study of Rut-Depth Measurements. Transportation Research Record: Journal of the Transportation Research Board, No. 1764, Transportation Research Board of the National Academies, Washington, D.C., 2001: p. 78-88.
 
[6]  Ali, H.A., Tayabji, S. D., Using Transverse Profile Data to Compute Plastic Deformation Parameters for Asphalt Concrete Pavements. Transportation Research Record: Journal of the Transportation Research Board, No. 1716, Transportation Research Board of the National Academies, Washington, D.C., 2000: p. 89-97.
 
[7]  Mehta, Y., Roque, R., Lopp, G., and Villiers, C., Evaluation of Road Surface Profiler and Transverse Profilogragh for Determination of Rut Depths. Transportation Research Record: Journal of the Transportation Research Board, No. 1764, Transportation Research Board of the National Academies, Washington, D.C., 2001: p. 157-163.
 
[8]  Villiers, C., Roque, R., and Dietrich, B., Interpretation of Transverse Profiles to Determine the Source of Rutting within an Asphalt Pavement System. Transportation Research Record: Journal of the Transportation Research Board, No. 1196, Transportation Research Board of the National Academies, Washington, D.C., 2005: p. 73-81.
 
[9]  Tsai, Y., Wang, Z., Li, F., Assessment of Rut Depth Measurement Using Emerging 3D Continuous Laser Profiling Technology, in Transportation Research Board 90th Annual Meeting. 2011: Washington DC. p. 14.
 
[10]  Wang, H., Development of Laser System to Measure Pavement Rutting. 2005, University of South Florida, USA.
 
[11]  Simpson, A.L., Daleiden, J. F., and Hadley, W. O., Rutting Analysis from a Different Perspective.Transportation Research Record: Journal of the Transportation Research Board, No. 1473, Transportation Research Board of the National Academies, Washington, D.C., 1995: p. 9-17.
 
[12]  Simpson, A.L., Characterization of Transverse Profile. Transportation Research Record: Journal of the Transportation Research Board, No. 1655, Transportation Research Board of the National Academies, Washington, D.C., 1999: p. 185-191.
 
[13]  Haddock, J.E., Hand A. J. T., Fang, H. and White, T. D., Determining Layer Contributions to Rutting by Surface Profile Analysis. Journal of Transportation Engg, Volume 131, Issue 2, , 2005: p. 131-139.
 
[14]  White, T.D., Haddock, J. E., Hand, A. J. T., and H., Fang., NCHRP Report 468: Contributions of Pavement Structural Layers to Rutting of Hot Mix Asphalt Pavements.Transportation Research Board, National Research Council, Washington, D.C. 2002.