American Journal of Civil Engineering and Architecture
ISSN (Print): 2328-398X ISSN (Online): 2328-3998 Website: Editor-in-chief: Mohammad Arif Kamal
Open Access
Journal Browser
American Journal of Civil Engineering and Architecture. 2018, 6(2), 46-53
DOI: 10.12691/ajcea-6-2-1
Open AccessArticle

Physical Mechanical Properties and Durability of Mortars Containing Tuff from Burkina Faso as Partial Substitution of CEM I

Sidiki KABRE1, Nafissatou SAVADOGO1, Abdou LAWANE1 and Adamah MESSAN1,

1Institut International d’ingénierie de l’Eau et de l’Environnement (2iE), Laboratoire Eco-Matériaux de Construction (LEMC), Rue de la Science - 01 BP 594 Ouagadougou 01 - Burkina Faso

Pub. Date: February 02, 2018

Cite this paper:
Sidiki KABRE, Nafissatou SAVADOGO, Abdou LAWANE and Adamah MESSAN. Physical Mechanical Properties and Durability of Mortars Containing Tuff from Burkina Faso as Partial Substitution of CEM I. American Journal of Civil Engineering and Architecture. 2018; 6(2):46-53. doi: 10.12691/ajcea-6-2-1


This paper presents the feasibility of using locally available limestone Tuff in Burkina Faso as a partial replacement for CEM I artificial Portland cement. To this end, standard tests were carried out in the laboratory on mortars containing variable proportions of Tuff in partial substitution of CEM I cement. These include heat of hydration, setting time, total shrinkage, compressive strength, capillary absorption and resistance to acid attack. The experimental results obtained show that Tuff can be used as a natural pozzolan. It is also noted that the incorporation of Tuff into cement has virtually no influence on the transfer properties of mortars. However, at a rate above 15% partial substitution of CEM I, the mechanical strength of mortars is considerably reduced. This is probably linked to the finesse of the Tuff used. A finer shredding improved the mechanical activity index. However, we note a better resistance to acid attack (sulphuric acid that can come from acid rain) of mortars containing Tuff compared to mortar based on artificial Portland cement. All these results have shown that the Tuff used in this work can be a solution for reducing CO2 emissions in cement production and also in reducing the price of cement in Burkina Faso.

Tuff Natural pozzolana Eco-cement Mortar Durability

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  J.Davidovits, “Geopolymers: Inorganic Polymeric New Materials”, Journal of Thermal Analysis Calorimetry, vol. 37, p. P-1633-1656, 1991.
[2]  N. Burriesci, C. Arcoraci, N. Giordano, P. L. Antonucci, “Zeolites from pumice and tuff as evaluation of pozzolanic cement constituents”, Zeolites, vol. 5, no 2, p. 96-100, 1985.
[3]  AÏTCIN P.C, “Binders for durable and sustainable concrete”, Science and Technology of Concrete Admixtures, 2008.
[4]  Horton R., Factor ten emission reductions: the key of sustainable development and economic prosperity for cement and concrete industry, Malhotra VM. USA: ACI SP-202, 2001.
[5]  I. A. Levitskii, A. I. Pozniak, S. E. Baranceva, “Effects of the Basaltic Tuff Additions on the Properties, Structure and Phase Composition of the Ceramic Tiles for Interior Wall Facing”, Procedia Engineering., vol. 57, p. 707-713, 2013.
[6]  A. Çavdar, Ş. Yetgin, “Availability of tuffs from northeast of Turkey as natural pozzolan on cement, some chemical and mechanical relationships”, Construction and Building Materials., vol. 21, no 12, p. 2066-2071, 2007.
[7]  Seynou.M, “Caractérisation de matières premières argileuses des sites de Loulouka et de korona (Burkina Faso) : valorisation dans la céramique du carreau”, Université de Ouagadougou, Ouagadougou, 2009.
[8]  Seick Omar Sore, Adamah Messan, Elodie Prud’homme, Gilles Escadeillas, FrançoisTsobnang, “Synthesis and characterization of geopolymer binders based on local materials from Burkina Faso - Metakaolin and rice husk ash”, Construction and Building Materials, vol. 124, p. 301-311, 2016.
[9]  F. Ntimugura, S. O. Soré, L. Bello, A. Messan, “The Influence of Metakaolin from Saaba (Burkina Faso) over Physico-Mechanical and Durability Properties of Mortars”, Open Journal of Civil Engineering, no 7, p. 389-408, 2017.
[10]  A. G. Türkmenoğlu and A. Tankut, “Use of tuffs from central Turkey as admixture in pozzolanic cements: Assessment of their petrographical properties”, Cement and Concrete Research., vol. 32, no 4, p. 629-637, 2002.
[11]  G. Colombier, “Tufs et encroûtements calcaires dans la construction routière,Synthèse”. ISTED, 1988.
[12]  M. Duhahi, “Contribution à la valorisation des tufs et encroûtements calcaires en techniques routière saharienne”, École polytechnique d’Alger, 2007.
[13]  Laboratoire Central des Travaux Publics (LCTP), “Étude de promotion et vulgarisation des techniques d’entretien en matériaux locaux: gisements des tufs inventoriés”. Ministère des Travaux publics (MTP), 2006.
[14]  Musick, Steven P., “The distribution and use of caliche as a building materials”, Second. Texas: center for Maximum Potential Building Systems, 1979.
[15]  B. Liguori, F. Iucolano, B. de Gennaro, M. Marroccoli, D. Caputo, “Zeolitized tuff in environmental friendly production of cementitious material: Chemical and mechanical characterization”, Construction and building Materials, vol. 99, p. 272-278. 2015.
[16]  A. Bilotta, F. Ceroni, E. Nigro, M. Pecce, “Experimental tests on FRCM strengthening systems for tuff masonry elements”, Construction and building Materials, vol. 138, p. 114-133, 2017.
[17]  EN 196-3, “Méthodes d’essais des ciments-Partie 3: détermination du temps de prise et de la stabilité”. CEN, 2008.
[18]  NF- EN 933-8, “Essais pour déterminerles caractéristiques geometriques des granulats-Partie 8: Evaluation des éléments fins”. 1999.
[19]  NF EN 196-1, “Méthodes d’essais des ciments-Partie 1: Détermination des résistances mécaniques”. 2008.
[20]  EN 196-3, “Détermination du temps de prise et stabilité”. CEN, 2008.
[21]  NF P 15-436,”Binders- Measuring the hydration heat of cements by means of semi- adiabatic calorimetry (Langavant method)”. 1988.
[22]  NF P 15-433, “Méthodes d’essais des ciments-Détermination du retrait et du gonflement”. 1994.
[23]  AFPC-AFREM, “Taux d’absorption par succions cappillaires”. 1998.
[24]  ASTM D 559, “Standard Test Méthods for Wetting and Drying”.
[25]  N. Dave, A. K. Misra, A. Srivastava, S. K. Kaushik, “Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing”, International Journal of Sustainable Built and Environment, vol. 6, no 1, p. 30-36, 2017.
[26]  R. Talero, C. Pedrajas, M. González, C. Aramburo, A. Blázquez, et V. Rahhal, “Role of the filler on Portland cement hydration at very early ages: Rheological behaviour of their fresh cement pastes”, Construction and building Materials, vol. 151, p. 939-949, 2017.
[27]  M.I Sanchez de rojas, “The influence of different additions on portland cement hydratation heat”, Cement and Concrete Research, vol. 23, p. 46-54, 1993.
[28]  J. Brooks, M.A. Megat Johari., M. Mazloom, “Effect of admixtures on the setting times of high-strength concrete”, Cement and Concrete Composites, vol. 22, p. 293-301, 2000.
[29]  W. Wongkeo, P. Thongsanitgarn, A. Chaipanich, “Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars”, Materials and Design, no 136, p. 655-662, 2012.
[30]  A. Itim, K. Ezziane, E.-H. Kadri, “Compressive strength and shrinkage of mortar containing various amounts of mineral additions”, Construction and building Materials, vol. 25, p. 3603-3609, 2011.
[31]  B. Yılmaz, A. Uçar, B. Öteyaka, V. Uz, “Properties of zeolitic tuff (clinoptilolite) blended portland cement”, Building and Environnement, vol. 42, no 11, p. 3808-3815, 2007.
[32]  M. Cherrak, A. Bali, and K. Silhadi, “Concrete mix design containing calcareous tuffs as a partial sand substitution”, Construction and building Materials, vol. 47, p. 318-323, 2013.
[33]  Courard .L and Darimont. A, “Durability of mortars modified with metakaolin”, Cement and Concrete Research, vol. 33, p. 1473-1479, 2003.
[34]  Rackel San Nicolas, “Aproche performentielle des betons avec métakaolins obtenus par calcination flash”, PhD thesis, Université Paul Sabatier, Toulouse III, 2011.
[35]  J. Monteny, E. Vincke, A. Beeldens, N. De Belie, and L. Taerwe, “Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete”, Cement and Concrete Research, vol. 30, p. 623-634, 2000.
[36]  N. Savadogo, A. Messan, F. Tsobnang, and W.P. Agbodjan, “Durability of composite cement with Tefereyre (NIGER) coal bottom ash: Capillary absorption, porosity to water and acid attack.”, Journal of Materials and Engineering Structures 2, p. 213-223, 2015.
[37]  Haifeng Yuan, Patrick Dangla, Patrice Chatellier, Patrice Chatelliert, “Degradation modelling of concrete submitted to sulfuric acid attack”, Cement and Concrete Research, vol. 53, p. 267-277, 2013.
[38]  Frank Bellmann, Bernd Möser, and Jochen Stark, “Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen”, Cement and Concrete Research, vol. 36, p. 358-363, 2005.