American Journal of Civil Engineering and Architecture
ISSN (Print): 2328-398X ISSN (Online): 2328-3998 Website: http://www.sciepub.com/journal/ajcea Editor-in-chief: Dr. Mohammad Arif Kamal
Open Access
Journal Browser
Go
American Journal of Civil Engineering and Architecture. 2015, 3(1), 8-14
DOI: 10.12691/ajcea-3-1-2
Open AccessArticle

Geotechnical Properties of Sub- Soils in Escravos Estuary, Western Niger Delta, Nigeria

H.O Nwankwoala1, A.N. Amadi2, , T. Warmate3 and M. O. Jimoh2

1Department of Geology, University of Port Harcourt, Nigeria

2Department of Geology, Federal University of Technology, Minna, Nigeria

3Geostrat International Services Limited, No.14 Mannila Pepple Street, D-Line, Port Harcourt, Nigeria

Pub. Date: January 11, 2015

Cite this paper:
H.O Nwankwoala, A.N. Amadi, T. Warmate and M. O. Jimoh. Geotechnical Properties of Sub- Soils in Escravos Estuary, Western Niger Delta, Nigeria. American Journal of Civil Engineering and Architecture. 2015; 3(1):8-14. doi: 10.12691/ajcea-3-1-2

Abstract

This study evaluates the sub-soil geotechnical characteristics at the onshore pipeline route at Escravos estuary, Western Niger Delta, Nigeria. Acquisition of soil samples for geotechnical studies was done by conventional boring method using light shell and auger hand rig. Samples were analyzed in the laboratory using standard analytical procedures. The samples explored showed a profile of very soft greenish dark grey and reddish brown clay formation. All samples observed confirmed this lithostratigraphy except for some of the grab samples. The entire formation generally, presents a low amount of organic content, low shear strength and high carbonate content. The unit weight showed an increase with high carbonate content. The samples gave a high amount of moisture content, higher than the liquid limit which indicates that on loading the pipeline route, the weight of the pipeline will dissipate a large amount of the pore water with a resultant increase in settlement. The pipeline should be placed on slippers pad at designated locations on the seabed along the survey route to avoid excessive settlement. This would distribute the anticipated pressure from the pipeline over a greater area and thus reduce the excessive settlement which is the characteristics of the very soft marine clay encountered in this investigation. The dimensions and bearing capacity of such slippers pads can easily be determined.

Keywords:
Geotechnical Properties borehole sub-soil Settlement Pipeline Escravos Estuary Western Niger Delta Nigeria

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Abam T. K. S. (1999). Dynamics and quality of water resources in the Niger Delta. Proceedings of IUGG 99 Symposium HSS Birmingham) IAHS Publ. No. 259, pp. 429-437.
 
[2]  Allen, J. R. L. (1965). Late Quatenary Niger Delta and adjacent areas: sedimentary environment and lithofacies. American Association of Petroleum Geologists, Vol. 49, pp. 549-600.
 
[3]  Amajor, L. C. and Ofoegbu C. O. (1988). Determination of polluted aquifers by stratigraphically controlled biochemical mapping; Example from the Eastern Niger Delta, Nigeria. Groundwater and Mineral Resources of Nigeria, pp. 62-73.
 
[4]  Dun,T.S, Anderson L.R. and Keifer (1980). Fundamental of Geotechnical Analysis – John Wiley Publisher, 414 pages.
 
[5]  Etu-Efeotor, J.O (1981). Preliminary hydrogeochemical investigation of subsurface waters in parts of the Niger Delta. Jour. Min. Geol. 18(1):103-105
 
[6]  Etu-Efeotor, J.O and Akpokodje, E.G (1990). Aquifer systems of the Niger Delta. Journal of Mining Geology, 26(2):279-284.
 
[7]  Etu-Efeotor, J.O and Odigi, M.I (1983). Water supply problems in the Eastern Niger Delta. Jour. Min. Geol. 26(2):279-279.
 
[8]  Haddou, M.B; Essahlaoui, A; Boujlal, M; Elouali, A; and Hmaidi, A (2013). Study of the geotechnical parameters of the different soils by correlation analysis and statistics in the Kenitra Region of Morocco. Journal of Earth Sciences and Geotechnical Engineering, 3(2): 51-60.
 
[9]  Niger Delta Environmental Survey (1999) Physical Environment Report on the Hydrology of the Niger Delta.
 
[10]  Nwankwoala, H.O and Oborie, E (2014). Geotechnical Investigation and Characterization of Sub-soils in Yenagoa, Bayelsa State, Central Niger Delta, Nigeria. Civil and Environmental Research, 6(7):75-83.
 
[11]  Nwankwoala, H.O and Warmate, T (2014). Subsurface Soil Characterization of a Site for Infrastructural Development Purposes in D/Line, Port Harcourt, Nigeria. American International Journal of Contemporary Research, 4(6): 139-148.
 
[12]  Nwankwoala, H.O; Amadi, A.N; Ushie, F.A & Warmate, T (2014). Determination of Subsurface Geotechnical Properties for Foundation Design and Construction in Akenfa Community, Bayelsa State, Nigeria. American Journal of Civil Engineering and Architecture, 2(4): 130-135.
 
[13]  Osakuni M.U and Abam T.K.S: (2004) Shallow resisitivity measurement for cathodic protection of pipelines in the Nigeri Delta. Environmental Geology Vol. 45. No.6 747-752.
 
[14]  Peck, R.B; Hanson W.E and Thornburn T.H (1973) Foundation Engineering 2nd Edition John Wiley and Sons 514pp.
 
[15]  Short, K. C. and Stauble, A. J. (1967).Outline of Geology of the Niger Delta. American Association of Geologists, Vol. 51, No. 5, pp. 761-779.
 
[16]  Tomlinson M. J (1999) Foundation Design and Construction 6th Edition, Longman, 536.