American Journal of Civil Engineering and Architecture
ISSN (Print): 2328-398X ISSN (Online): 2328-3998 Website: http://www.sciepub.com/journal/ajcea Editor-in-chief: Dr. Mohammad Arif Kamal
Open Access
Journal Browser
Go
American Journal of Civil Engineering and Architecture. 2014, 2(5), 174-176
DOI: 10.12691/ajcea-2-5-4
Open AccessArticle

Hydration and Strength Behavior of Sugarcane-Baggase Ash Concrete Using Electrical Resistivity Measurement

Muazu Bawa Samaila1, 2, , Wei Xiaosheng1 and Ashhabu Elkaseem2

1Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, China

2Civil Engineering Department, Hassan Usman Katsina Polytechnic, Katsina State , Nigeria

Pub. Date: November 24, 2014

Cite this paper:
Muazu Bawa Samaila, Wei Xiaosheng and Ashhabu Elkaseem. Hydration and Strength Behavior of Sugarcane-Baggase Ash Concrete Using Electrical Resistivity Measurement. American Journal of Civil Engineering and Architecture. 2014; 2(5):174-176. doi: 10.12691/ajcea-2-5-4

Abstract

Electrical resistivity method was adopted in monitoring the hydration of concrete containing different percentage of baggase ash. It has been discovered that the bulk electrical resistivity is a function of the solution electrical resistivity and porosity. Two model components were suggested where the solution resistivity was dominated by bulk resistivity at early age then by porosity at later age. The result found that the pore discontinuity occurs faster with increasing baggase ash quantity up to 20% then started declining meaning that 20% is within the optimum range of the baggase ash quantity to be used and this is similar to the results obtained from compressive strength, setting time tests.

Keywords:
Concrete Hydration Baggase ash Electrical Resistivity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Guilherme, C.C., Romildo D. T. F., Luís M. T., Eduardo de M. R. F, “Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete,” Cem. Concr. Res., 39 (2). 110-115, Feb. 2009.
 
[2]  Martirena, J.F.M.H., Middeendor, B., Gehrke, M., and Budelmann, H., “Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction,” Cem. Concr. Res. 28 (11). 1525-1536, Nov. 1998.
 
[3]  Singh, N.B., Singh, V.D., and Rai, S., “Hydration of bagasse ash-blended Portland cement,” Cem. Concr. Res., 30 (9). 1485-1488, Sept. 2000.
 
[4]  Ganesan, K., Rajagopal, K., Thangavel, K, “Evaluation of bagasse ash as supplementary cementitious material,” Cem. Concr. Compos., 29 (6). 515-524, Jul. 2007.
 
[5]  Zongjin, L., Lianzhen, X., and Xiaosheng, W., “Determination of concrete setting time using electrical resistivity measurement,” Journal of materials in civil engineering, 19 (5), 423-427. May 2007.
 
[6]  ASTM-Standards “Standard Test Method for Setting Time of Hydraulic Cement”, C191-92, 1993, 866-868.
 
[7]  Zongjin, L., Xiaosheng, W, and Wenlai, L., “Preliminary interpretation of Portland cement hydration process using resistivity measurements,” Material Journal, American Concrete Institute, 100 (3): 253-257. June 2003.
 
[8]  Xiaosheng, W., Lianzhen, X., and Zongjin L., “Electrical measurement to assess hydration process and the porosity formation,” Journal of Wuhan University of Tech., 23 (5): 761-766. 2008.