American Journal of Biomedical Research
ISSN (Print): 2328-3947 ISSN (Online): 2328-3955 Website: http://www.sciepub.com/journal/ajbr Editor-in-chief: Hari K. Koul
Open Access
Journal Browser
Go
American Journal of Biomedical Research. 2013, 1(4), 112-119
DOI: 10.12691/ajbr-1-4-7
Open AccessArticle

“Combinatorial Strategy”: A Highly Efficient Method for Cloning Different Vectors with Various Clone Sites

Gang Zhang1, 2, and Anurag Tandon1

1Department of Medicine, Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada

2Division of Nephrology, Massachusetts General Hospital, Charlestown, USA

Pub. Date: November 15, 2013

Cite this paper:
Gang Zhang and Anurag Tandon. “Combinatorial Strategy”: A Highly Efficient Method for Cloning Different Vectors with Various Clone Sites. American Journal of Biomedical Research. 2013; 1(4):112-119. doi: 10.12691/ajbr-1-4-7

Abstract

In this study, we generalized the “Combinatorial Strategy” for efficient cloning of different vectors with various clone sites. 1) Using originally existed clone sites from circular plasmids to prepare the inserts, if no appropriate sites available, performing SDM to create compatible sites, could achieve maximal correct digestion of the inserts. 2) Different vectors were digested with various restriction endonucleases, and then dephosphorylated after digestion. 3) Top10 competent cells were used for transformation to increase the transformant colonies. Our results showed that, when either blunt-sites or Xba I site was adopted for ligation, the percentages of positive clones were about 50%. Whereas, when different sites, including one blunt and another Pst I sites, Not I and Xho I sites, were used, the percentages of positive clones were nearly 100%. With this strategy, most vectors could be successfully cloned through “one ligation, one transformation, three to five minipreps”.

Keywords:
DNA recombination combinatorial strategy vector cloning site-directed mutagenesis Top 10 cells clone sites

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Jackson, D.A., Robert, H.S. and Berg, P., Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of E. coli, Proc. Nat. Acad. Sci. USA, 69: 2904-2909, 1972.
 
[2]  Cohen, S.N., Chang, A.C.Y., Boyert, H.W. and Hellingt, R.B., Construction of biologically functional bacterial plasmids in vitro, Proc. Nat. Acad. Sci. USA, 70: 3240-3244, 1973.
 
[3]  Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M. and Trono, D., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science, 272: 263-267, 1996.
 
[4]  Cui, Y., Golob, J., Kelleher, E., Ye, Z., Pardoll, D., Cheng, L., Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells, Blood, 99: 399-408, 2002.
 
[5]  Lois, C., Hong, E.J., Pease, S., Brown, E.J., Baltimore, D., Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science, 295: 868-872, 2002.
 
[6]  Pfeifer, A., Ikawa, M., Dayn, Y., Verma, I.M., Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos, Proc Natl Acad Sci USA, 99: 2140-2145, 2002.
 
[7]  Yu, X., Zhan, X., D’Costa, J., Tanavde, V.M., Ye, Z., Peng, T., Malehorn, M.T., Yang, X., Civin, C.I. and Cheng, L., Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells, Mol Ther, 7: 827-838, 2003.
 
[8]  Zufferey, R., Dull, T., Mandel, R.J., Bukovsky, A., Quiroz, D., Naldini, L., and Trono, D., Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery, J Virol, 72: 9873-9880, 1998.
 
[9]  Szulc, J., Wiznerowicz, M., Sauvain, M.O., Trono, D., Aebischer, P., A versatile tool for conditional gene expression and knockdown, Nat Methods, 3: 109-116, 2006.
 
[10]  Hotta, A., Cheung, A.Y., Farra, N., Vijayaragavan, K., Séguin, C.A., Draper, J.S., Pasceri, P., Maksakova, I.A., Mager, D.L., Rossant, J., Bhatia, M. and Ellis, J., Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency, Nat Methods, 6: 370-376, 2009.
 
[11]  Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N. and Mostoslavsky, G., Induced pluripotent stem cell generation using a single lentiviral stem cell cassette, Stem Cells, 27: 543-549, 2009.
 
[12]  Tremblay, P., Meiner, Z., Galou, M., Heinrich, C., Petromilli, C., Lisse, T., Cayetano, J., Torchia, M., Mobley, W., Bujard, H., DeArmond, S.J. and Prusiner, S.B., Doxycycline control of prion protein transgene expression modulates prion disease in mice, Proc Natl Acad Sci USA, 95: 12580-12585, 1998.
 
[13]  Zhang, G. and Tandon, A., Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site, Sci Rep, 2: 415, 2012.
 
[14]  Hutchison, C.A.III., Phillips, S., Edgell, M.H., Gillam, S., Jahnke, P. and Smith, M., Mutagenesis at a specific position in a DNA sequence, J Biol Chem, 253: 6551-6560, 1978.
 
[15]  Norrander, J., Kempe, T. and Messing, J., Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis, Gene, 26: 101-106, 1983.
 
[16]  Liu, H. and Naismith, J.H., An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol, BMC Biotech, 8: 91, 2008.
 
[17]  Visanji, N.P., Wislet-Gendebien, S., Oschipok, L.W., Zhang, G., Aubert, I., Fraser, P.E. and Tandon, A., The effect of S129 phosphorylation on the interaction of α-synuclein with synaptic and cellular membranes, J Biol Chem, 286: 35863-35873, 2011.
 
[18]  Campeau, E., Ruhl, V.E., Rodier, F., Smith, C.L., Rahmberg, B.L., Fuss, J.O., Campisi, J., Yaswen, P., Cooper, P.K. and Kaufman, P.D., A versatile viral system for expression and depletion of proteins in mammalian cells, PLoS One, 4: e6529, 2009.
 
[19]  Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Plainview, NY, 2001.
 
[20]  Seeburg, P., Shine, J., Martial, J.A., Baxter, J.D., Goodman, H.M., Nucleotide sequence and amplification in bacteria of structural gene for rat growth hormone, Nature, 270: 486-494, 1977.
 
[21]  Ullrich, A., Shine, J., Chirgwin, J., Pictet, R., Tischer, E., Rutter, W.J. and Goodman, H.M., Rat insulin genes: construction of plasmids containing the coding sequences, Science, 196: 1313-1319, 1977.
 
[22]  Marumoto, T., Tashiro, A., Friedmann-Morvinski, D., Scadeng, M., Soda, Y., Gage, F.H. and Verma, I.M., Development of a novel mouse glioma model using lentiviral vectors, Nat Med, 15: 110-116, 2009.
 
[23]  Edelheit, O., Hanukoglu, A. and Hanukoglu, I., Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies, BMC Biotech, 9: 61, 2009.
 
[24]  Jung, V., Pestka, S.B. and Pestka, S., Efficient cloning of PCR generated DNA containing terminal restriction endonuclease recognition sites, Nucleic Acids Res, 18: 6156, 1990.
 
[25]  Testori, A., Listowsky, I. and Sollitti, P., Direct cloning of unmodified PCR products by exploiting an engineered restriction site, Gene, 143: 151-152, 1994.
 
[26]  Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Plainview, NY, 1989.
 
[27]  Yang, S., Li, X., Ding, D., Hou, J., Jin, Z., Yu, X., Bo, T., Li, W. and Li, M., A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase, Biotechnol Appl Biochem, 42: 223-226, 2005.