American Journal of Biomedical Research
ISSN (Print): 2328-3947 ISSN (Online): 2328-3955 Website: Editor-in-chief: Hari K. Koul
Open Access
Journal Browser
American Journal of Biomedical Research. 2016, 4(2), 27-37
DOI: 10.12691/ajbr-4-2-1
Open AccessArticle

Formulation Development and In-vitro Evaluation of Minoxidil Bearing Glycerosomes

Deepika Rani1, Chhater Singh1, , Arvind Kumar1 and Vinit Kr. Sharma2

1S.D. College of Pharmacy & Voc. Studies, Muzaffarnagar, (U.P.), India

2R.K.S.D College of Pharmacy, Kaithal (Haryana), India

Pub. Date: April 18, 2016

Cite this paper:
Deepika Rani, Chhater Singh, Arvind Kumar and Vinit Kr. Sharma. Formulation Development and In-vitro Evaluation of Minoxidil Bearing Glycerosomes. American Journal of Biomedical Research. 2016; 4(2):27-37. doi: 10.12691/ajbr-4-2-1


Present study was undertaken to assess the potential of Glycerosomes as a novel drug delivery system for topical application of Minoxidil. Pre-formulation studies were done for identification of drug as well as for determination of its physiochemical properties. Spectra of various mixtures of drug and excipients do not show any additional peak thus, indicating compatibility with each other. Glycerosomes was prepared by using lipid thin film hydration method. Prepared formulations were evaluated in terms of particle size, surface analysis, zeta potential, entrapment efficiency and in-vitro drug release. The formulated Glycerosomes were found to have better surface characteristics and entrapment efficiency. The in vitro drug dissolution study was carried out using egg membrane on modified franz diffusion cell and the release mechanisms were explored. The release data was incorporated into various mathematical models and the formulation follows Higuchi as well as Fickian diffusion. Results study proved that Glycerosomes containing Minoxidil can be an excellent therapy for Alopecia.

Glycerosomes Minoxidil Lipid thin film hydration topical drug delivery novel formulation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Dash, T.R., Verma, P, “Matrix Tablets. An Approach towards Oral Extended Release Drug Delivery,” International Journal of Pharma Research & Review, 2(2), 12-24. 2013.
[2]  Parashar, T., Soniya., Singh, V., Singh, G., Tyagi, S., Patel, C., Gupta, A, “Novel oral sustained release technology: A concise review,” International Journal of Research and Development in Pharmacy and Life Sciences, 2(2), 262-269. 2013.
[3]  Kushwaha, S.K.S., Rastogi, A., Rai, A.K., Singh, S, “Novel drug delivery system for anticancer drug: A review,” International Journal of Pharmtech Research, 4(2), 542-553. 2012-31. 2012.
[4]  Bhowmik, D., Gopinath, H., Kumar, B.P., Duraivel, S., Kumar K.P.S, “Recent advances in novel topical drug delivery system”, The Pharma Innovation, 1(9), 12-31.2012.
[5]  Abdallah, M.H, “Transferosomes as a transdermal drug delivery system for enhancement the antifungal activity of Nystatin.” International Journal of Pharmacy and Pharmaceutical Sciences, 5(4), 560-567. 2013.
[6]  Walve, J.R., Bakliwal, S.R., Rane, B.R., Pawar, S.P, “Transferosomes: A surrogated carrier for the transdermal drug delivery system,” International Journal of Applied Biology and Pharmaceutical Technology,2(1), 204-213. 2011.
[7]  Kumar, R., Singh, M., Bala, R., Seth, N., Rana, A.C, “Transferosomes: A novel approach for transdermal drug delivery,” International Research Journal of Pharmacy, 3(1), 20-24. 2012.
[8]  Kamboj, S., Saini, V., Magon, N., Bala, S., Jhawat, V. “Vesicular drug delivery systems: A novel approach for drug targeting,” International Journal of Drug Delivery, 5(2), 121-130. 2013.
[9]  Kumar, R., Kumar, S., Jha, S.S., Jha, A,K, “Vesicular System-Carrier for Drug Delivery,” Der Pharmacia Sinica, 2(4), 192-202. 2011.
[10]  Sachan, R., Parashar, T., Soniya, Singh, V., Singh, G., Tyagi, S., Patel, C., Gupta, A, “Drug carrier Transferosomes: A novel tool for transdermal drug delivery system,” International Journal of Research and Development in Pharmacy and Life Sciences, 2(2), 309-316. 2013.
[11]  Manca, M.L., Zaru, M., Manconi, M., Lai, F., Valenti, D., Sinico, C., Fadda, A.M, “Glycerosomes: A new tool for effective dermal and transdermal drug Delivery,” International Journal of Pharmacy, 455, 66-74. 2013.
[12]  Zaru, M., Manca, M.L., Fadda, M., Orsini, G,“Glycerosomes and thereof use in pharmaceutical and cosmetic preparation for topical application,”. US2012/0141565, 2012, Jun 7.
[13]  Indian Pharmacopoeia. Delhi, India. The Indian Pharmacopoeia Commission, 2010, volume 2,p-1697.
[14]  Engelmann, F.M., Rocha, S.V., Henrique, E.T., Koiti, A., Baptista, S.B, “Determination of n-Octanol/water partition and membrane binding of cationic porphyrins,” International Journal of Pharmaceutics, 329, 12-18. 2007.
[15]  Abu, T.M.S., Ajit, B.T., Rabin, N.G., Micheal, G.F., Sunanda, A.R., Kenneth, R.M, “Selection of solid dosage from composition through drug excipient compatibility testing,” Journal of Pharmaceutical Sciences, 88(7), 696-704. 1999.
[16]  Laxmi, V., Zafaruddin., Kuchana, V, “Design and characterization of transferosome gel of Repaglinide,” International Research Journal of Pharmacy, 6(1), 38-42. 2015.