American Journal of Biomedical Research
ISSN (Print): 2328-3947 ISSN (Online): 2328-3955 Website: http://www.sciepub.com/journal/ajbr Editor-in-chief: Hari K. Koul
Open Access
Journal Browser
Go
American Journal of Biomedical Research. 2021, 9(1), 10-18
DOI: 10.12691/ajbr-9-1-3
Open AccessArticle

Morpho-biochemical Characteristics of Autophagy of Lymphocytes from Peripheral Blood of Patients with Moderate and Severe Bronchial Asthma

Yulia V. Skibo1, Cyrille A. Vodounon2, , Boris B. Legba3, 4, Sergey N. Abramov1, Vladimir G. Evtugyn5, Irina D. Reshetnikova6, 7 and Zinaida I. Abramova1

1Department of Biochemistry, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation

2Laboratory of Biochemistry and Immunology. National University of Sciences, Technologies, Engineering and Mathematics. BP: 72 Natitingou, Republic of Benin

3Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Sciences and Technology, University of Abomey-Calavi, Republic of Benin

4Research Unit in Applied Microbiology and Pharmacology of natural substances, Laboratory of Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi

5Department of Invertebrate Zoology and Functional Histology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation

6Clinic of allergic diseases of Kazan Research Institute of Epidemiology and Microbiology, Kazan, Russian Federation

7Kazan state medical Academy, Kazan, Russia Federation

Pub. Date: May 13, 2021

Cite this paper:
Yulia V. Skibo, Cyrille A. Vodounon, Boris B. Legba, Sergey N. Abramov, Vladimir G. Evtugyn, Irina D. Reshetnikova and Zinaida I. Abramova. Morpho-biochemical Characteristics of Autophagy of Lymphocytes from Peripheral Blood of Patients with Moderate and Severe Bronchial Asthma. American Journal of Biomedical Research. 2021; 9(1):10-18. doi: 10.12691/ajbr-9-1-3

Abstract

The increased interest in the process of autophagy in various physiological and pathological conditions is the focus of this study. Therefore, the aim was to assess the involvement of lymphocyte autophagy in the pathogenesis of bronchial asthma. Forty-five patients with mild persistent asthma, 45 patients with severe persistent asthma, and 45 normal healthy controls were involved in this study. Autophagy was evaluated based on the expression of microtubule-associated protein light chain 3 (LC3) by western blot, Fluorescence microscopy, and flow cytometry. Transmission Electron Microscopy was used to detect autophagosome. The results showed that autophagy was activated in T-cells of patients with mild and severe asthma compared to the normal healthy control. Stress conditions induced autophagy in T-cells of asthmatic patients with mild and severe form, but not in the control group. Dexamethasone treatment of T-cells stimulated apoptosis in mild asthma patients and in the control group but in the group with severe asthma, dexamethasone induced autophagy. Thus, autophagy could play an important role in the pathogenesis of asthma especially of severe asthma, and may contribute to the survival and the activation of T-lymphocyte in patients with severe asthma.

Keywords:
autophagy apoptosis T lymphocytes bronchial asthma

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  J. Yuan and G. Kroemer: “Alternative cell death mechanisms in development and beyond.” Genes Dev. vol. 24, no. 23, pp. 2592–2602, 2010.
 
[2]  L. Galluzzi, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, P. Agostinis, E.S. Alnemri, L. Altucci, I. Amelio, D.W. Andrews, M. Annicchiarico-Petruzzelli, A.V. Antonov, E. Arama, E.H. Baehrecke, N.A. Barlev, N.G. Bazan, F. Bernassola, M.J.M. Bertrand, K. Bianchi, M.V. Blagosklonny, K. Blomgren, C. Borner, P. Boya, C. Brenner, M. Campanella, E. Candi, D. Carmona-Gutierrez, F. Cecconi, F.K.-M. Chan, N.S. Chandel, E.H. Cheng, J.E. Chipuk, J.A. Cidlowski, A. Ciechanover, G.M. Cohen, M. Conrad, J.R. Cubillos-Ruiz, P.E. Czabotar, V. D’Angiolella, T.M. Dawson, V.L. Dawson, V. De Laurenzi, R. De Maria, K.-M. Debatin, R.J. DeBerardinis, M. Deshmukh, N. Di Daniele, F. Di Virgilio, V.M. Dixit, S.J. Dixon, C.S. Duckett, B.D. Dynlacht, W.S. El-Deiry, J.W. Elrod, G.M. Fimia, S. Fulda, A.J. García-Sáez, A.D. Garg, C. Garrido, E. Gavathiotis, P. Golstein, E. Gottlieb, D.R. Green, L.A. Greene, H. Gronemeyer, A. Gross, G. Hajnoczky, J.M. Hardwick, I.S. Harris, M.O. Hengartner, C. Hetz, H. Ichijo, M. Jäättelä, B. Joseph, P.J.
 
[3]  B. Loos, A.-M. Engelbrecht, R.A. Lockshin, D.J. Klionsky, and Z. Zakeri: “The variability of autophagy and cell death susceptibility: Unanswered questions.” Autophagy. vol. 9, no. 9, pp. 1270-1285, 2013.
 
[4]  G. Kroemer, G. Mariño, and B. Levine: “Autophagy and the integrated stress response.” Mol. Cell. vol. 40, no. 2, pp. 280-293, 2010.
 
[5]  A. Eisenberg-Lerner, S. Bialik, H.-U. Simon, and A. Kimchi: “Life and death partners: apoptosis, autophagy and the cross-talk between them.” Cell Death Differ. vol. 16, no. 7, pp. 966-975, 2009.
 
[6]  F. Randow and C. Münz: “Autophagy in the regulation of pathogen replication and adaptive immunity.” Trends Immunol. vol. 33, no. 10, pp. 475-487, 2012.
 
[7]  A.M.K. Choi, S.W. Ryter, and B. Levine: “Autophagy in human health and disease.” N. Engl. J. Med. vol. 368, no. 7, pp. 651-662, 2013.
 
[8]  B. Harrison, M. Kraus, L. Burch, C. Stevens, A. Craig, P. Gordon-Weeks, and T.R. Hupp: “DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing.” J. Biol. Chem. vol. 283, no. 15, pp. 9999-10014, 2008.
 
[9]  L.L.-Y. Chan, D. Shen, A.R. Wilkinson, W. Patton, N. Lai, E. Chan, D. Kuksin, B. Lin, and J. Qiu: “A novel image-based cytometry method for autophagy detection in living cells.” Autophagy. vol. 8, no. 9, pp. 1371-1382, 2012.
 
[10]  M.C. Peters and S.E. Wenzel: “Intersection of biology and therapeutics: type 2 targeted therapeutics for adult asthma.” The Lancet. vol. 395, no. 10221, pp. 371-383, 2020.
 
[11]  J.C. Cardet, P.J. Busse, J.K. Carroll, T.B. Casale, T. Coyne-Beasley, S. Dixon-Williams, M. Fagan, V.E. Forth, A.L. Fuhlbrigge, M.L. Hernandez, D. Kaelber, B. Kaplan, M. Lorenzi, S. Madison, N.E. Maher, K. Majewski, B. Manning, M.D. McKee, S. Nazario, W.D. Pace, M.J. Pencina, C.S. Rand, J. Rodriguez-Louis, L. She, J. Shields, J.E. Teng, M.E. Wechsler, J.P. Wisnivesky, B.P. Yawn, and E. Israel: “Adherence to adding inhaled corticosteroids to rescue therapy in a pragmatic trial with adults with asthma: A pilot study.” Annals of Allergy, Asthma & Immunology. 2020.
 
[12]  G. d’Ancona, J. Kavanagh, C. Roxas, L. Green, M. Fernandes, L. Thomson, J. Dhariwal, A.M. Nanzer, D.J. Jackson, and B.D. Kent: “Adherence to Inhaled Corticosteroids and Clinical Outcomes in Mepolizumab Therapy for Severe Asthma.” European Respiratory Journal. 2020.
 
[13]  N. Kearns, I. Maijers, J. Harper, R. Beasley, and M. Weatherall: “Inhaled Corticosteroids in Acute Asthma: A Systemic Review and Meta-Analysis.” The Journal of Allergy and Clinical Immunology: In Practice. vol. 8, no. 2, pp. 605-617.e6, 2020.
 
[14]  K.F. Chung, S.E. Wenzel, J.L. Brozek, A. Bush, M. Castro, P.J. Sterk, I.M. Adcock, E.D. Bateman, E.H. Bel, E.R. Bleecker, L.-P. Boulet, C. Brightling, P. Chanez, S.-E. Dahlen, R. Djukanovic, U. Frey, M. Gaga, P. Gibson, Q. Hamid, N.N. Jajour, T. Mauad, R.L. Sorkness, and W.G. Teague: “International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma.” European Respiratory Journal. vol. 43, no. 2, pp. 343-373, 2014.
 
[15]  M.A. Ghebre, P.H. Pang, D. Desai, B. Hargadon, C. Newby, J. Woods, L. Rapley, S.E. Cohen, A. Herath, E.A. Gaillard, R.D. May, and C.E. Brightling: “Severe exacerbations in moderate-to-severe asthmatics are associated with increased pro-inflammatory and type 1 mediators in sputum and serum.” BMC Pulm Med. vol. 19, no. 1, pp. 144, 2019.
 
[16]  R. Louis, C. Pilette, O. Michel, A. Michils, G. Brusselle, A. Poskin, J. Van Schoor, K. Denhaerynck, S. Vancayzeele, I. Abraham, and S. Gurdain: “Variability in total serum IgE over 1 year in severe asthmatics.” Allergy Asthma Clin Immunol. vol. 15, no. 1, pp. 20, 2019.
 
[17]  S.T. Holgate: “The sentinel role of the airway epithelium in asthma pathogenesis.” Immunol. Rev. vol. 242, no. 1, pp. 205-219, 2011.
 
[18]  G.-Y. Ban, D.L. Pham, T.H.K. Trinh, S.-I. Lee, D.-H. Suh, E.-M. Yang, Y.-M. Ye, Y.S. Shin, Y.-J. Chwae, and H.-S. Park: “Autophagy mechanisms in sputum and peripheral blood cells of patients with severe asthma: a new therapeutic target.” Clin. Exp. Allergy. vol. 46, no. 1, pp. 48-59, 2016.
 
[19]  C.A. Vodounon, C.B. Chabi, Y.V. Skibo, V. Ezin, N. Aikou, S.O. Kotchoni, S.A. Akpona, L. Baba-Moussa, and Z.I. Abramova: “Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma.” Allergy Asthma Clin Immunol. vol. 10, no. 1, pp. 14, 2014.
 
[20]  World Medical Assembly: “WMA - The World Medical Association-Declaration of Helsinki 1975,” https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/doh-oct1975/, (1975).
 
[21]  A. Bøyum, H. Brincker Fjerdingstad, I. Martinsen, T. Lea, and D. Løvhaug: “Separation of human lymphocytes from citrated blood by density gradient (NycoPrep) centrifugation: monocyte depletion depending upon activation of membrane potassium channels.” Scand. J. Immunol. vol. 56, no. 1, pp. 76-84, 2002.
 
[22]  F. Khorshid and S.S. Mushref: “In vitro Anticancer Agent I-Tissue Culture Study of Human Lung Cancer Cells A549 II-Tissue Culture Study of Mice Leukemia Cells L1210.” International Journal of Cancer Research. vol. 2, pp. 330-344, 2006.
 
[23]  N. Mizushima: “Methods for monitoring autophagy.” Int. J. Biochem. Cell Biol. vol. 36, no. 12, pp. 2491-2502, 2004.
 
[24]  Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, and T. Yoshimori: “LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.” EMBO J. vol. 19, no. 21, pp. 5720-5728, 2000.
 
[25]  M. Melis, L. Siena, E. Pace, M. Gjomarkaj, M. Profita, A. Pirazzoli, M. Todaro, G. Stassi, G. Bonsignore, and A.M. Vignola: “Fluticasone induces apoptosis in peripheral T-lymphocytes: a comparison between asthmatic and normal subjects.” Eur. Respir. J. vol. 19, no. 2, pp. 257-266, 2002.
 
[26]  V. Alode, S. Yulia, A. Nicolas, A. Simon, A. Ivanovna, S. Kotchoni, and L. Baba-Moussa: “Morphological and biochemical characteristics of apoptosis lymphocytes of peripheral blood in the pathogenesis of atopic bronchial asthma of light and serious severity.” Ageing research reviews. vol. 6, pp. 210-220, 2012.
 
[27]  G. Kroemer and M. Jäättelä: “Lysosomes and autophagy in cell death control.” Nat. Rev. Cancer. vol. 5, no. 11, pp. 886-897, 2005.
 
[28]  L. Luna-Dulcey, R. Tomasin, M.A. Naves, J.A. da Silva, and M.R. Cominetti: “Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells.” Oncotarget. vol. 9, no. 56, pp. 30787-30804, 2018.
 
[29]  K. Sato, T. Nishii, A. Sato, and R. Tatsunami: “Autophagy activation is required for homocysteine-induced apoptosis in bovine aorta endothelial cells.” Heliyon. vol. 6, no. 1, pp. e03315, 2020.
 
[30]  G. Runwal, E. Stamatakou, F.H. Siddiqi, C. Puri, Y. Zhu, and D.C. Rubinsztein: “LC3-positive structures are prominent in autophagy-deficient cells.” Scientific Reports. vol. 9, no. 1, pp. 1-14, 2019.
 
[31]  S. Swerdlow, K. McColl, Y. Rong, M. Lam, A. Gupta, and C.W. Distelhorst: “Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes.” Autophagy. vol. 4, no. 5, pp. 612-620, 2008.
 
[32]  R.J. Youle and A. Strasser: “The BCL-2 protein family: opposing activities that mediate cell death.” Nat. Rev. Mol. Cell Biol. vol. 9, no. 1, pp. 47-59, 2008.
 
[33]  J. As, C. Is, L. S, S. Jp, Y. Sw, and P. Cs: “Bcl-2 expression in sputum eosinophils in patients with acute asthma.” Thorax. vol. 55, no. 5, pp. 370-374, 2000.
 
[34]  S. Ying, L.N. Khan, Q. Meng, N.C. Barnes, and A.B. Kay: “Cyclosporin A, apoptosis of BAL T-cells and expression of Bcl-2 in asthmatics.” Eur. Respir. J. vol. 22, no. 2, pp. 207-212, 2003.
 
[35]  A. Abdulamir, R. Hafidh, F. Abubakar, and K. Abbas: “Changing survival, memory cell compartment, and T-helper balance of lymphocytes between severe and mild asthma.” BMC Immunol. vol. 9, pp. 73, 2008.