American Journal of Biomedical Research
ISSN (Print): 2328-3947 ISSN (Online): 2328-3955 Website: http://www.sciepub.com/journal/ajbr Editor-in-chief: Hari K. Koul
Open Access
Journal Browser
Go
American Journal of Biomedical Research. 2013, 1(2), 35-42
DOI: 10.12691/ajbr-1-2-3
Open AccessReview Article

Genomic-Epigenomic Signaling Pathways Changes in Cellular Differentiation Process

Victor Valdespino, , Patricia M. Valdespino and Victor Valdespino Junior

Pub. Date: April 03, 2013

Cite this paper:
Victor Valdespino, Patricia M. Valdespino and Victor Valdespino Junior. Genomic-Epigenomic Signaling Pathways Changes in Cellular Differentiation Process. American Journal of Biomedical Research. 2013; 1(2):35-42. doi: 10.12691/ajbr-1-2-3

Abstract

Cellular differentiation is a highly complex process and we need a deeper understanding of their mechanisms. Reprogramming somatic cells follows the inverse order to the physiologic differentiation process. Reprogramming somatic cells may be used as a simplistic model to understand the cellular differentiation process. The generation of induced pluripotent stem cells (iPSCs) requires going along through a complex network of genetic and epigenetic pathways. Dedifferentiation from somatic cells to iPSCs involves multiple genetic-epigenetic signaling pathways to obtain high levels of plasticity, self-renewal, motility and loss of specialized cellular functions. Eleven main signaling pathways have been involved in cell fate control and embryonic patterning. Extensive crosstalk among epigenetic pathways modifies DNA, histones and nucleosomes which make up the epigenetic mechanisms of gene regulation in differentiation and reprogramming processes.

Keywords:
cellular differentiation process reprogramming genetic and epigenetic mechanisms

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 1

References:

[1]  Furusawa C., Kaneko K. “A dynamical-systems view of stem cell biology.” Science 228(6104):215-217. Oct.2012.
 
[2]  Perrimon N., Pitsouli C., Shilo B.Z.”Signaling mechanisms controlling cell fate and embryonic patterning.” Cold Sping Harb Perspect Biol 4(8):a005975. Aug.2012.
 
[3]  Satpathy A., Wu X., Albring J.C., Murphy K.M. “Re(de)fining the dendritic cell lineage.” Nat Immunol 13(12):1145-1154. Dec.2012.
 
[4]  Kaech S.M., Cui W. “Transcriptional control of effector and memory CD8+ T cell differentiation.” Nat Rev Immunol 12(11): 749-761. Nov.2012.
 
[5]  Robinton D.A., Daley G.Q. “The promise of induced pluripotent stem cells in research and therapy.” Nature 481(7381):295-305. Jan.2012.
 
[6]  Rada-Iglesias A., Wysocka J. “Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease.” Genome Med 3(6):36 Jun.2011.
 
[7]  Vierbuchen T., Wernig M. “Molecular roadblocks for cellular reprogramming.” Mol Cell 47(6):827-838. Sept.2012.
 
[8]  Lund R.J., Narva E., Lahesmaa R. “Genetic and epigenetic stability of human pluripotent stem cells.” Nat Rev Genet 13(10):732-745. Oct.2012.
 
[9]  Jopling C., Boue S., Izpisua J.C.B.” Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration.” Nat Rev Mol Cell Biol 12(2):79-89. Feb.2011.
 
[10]  Li O., O’Malley M.E., Barlett D., Guo Z.S. “Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth.” Mol Cancer 10:63. May.2011.
 
[11]  Loh Y.H., Yang L., Yang J.C., Li H., Collins J.J., Daley G.Q.”Genomic approaches to deconstruct pluripotency.” Annu Rev Hum Genet, 12:165-185. 2011.
 
[12]  Narsinh K.H., Sun N., Sanchez-Freire V., Lee A.S., Almeida P., Hu S., et al. “Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells.” J Clin Invest, 121(3):1217-1222. Mar.2011.
 
[13]  Li M., Liu G.H., Izpisua B.J.C. “Navigating the epigenetic landscape of pluripotent stem cells.” Nat Rev Mol Cell Biol, 13(8):524-535. Aug.2012.
 
[14]  Takahashi K., Yamanaka S. “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.” Cell 126(4):663-676. Aug.2006.
 
[15]  Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. “Induction of pluripotent stem cells from adult human fibroblast by defined factors.” Cell 131(5):861-872. Nov.2007.
 
[16]  Brambrink T., Foreman R., Welstead G.G., Lenger C.J., Wernig M., Suh H., Jaenisch R. “Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells”. Cell Stem Cell, 2:151-159. Feb.2008.
 
[17]  Plath K., Lowry W.E. “Progress in undestanding reprogramming to the induced pluripotent state.” Nat Rev Gen 12(4):253-265. Apr.2011.
 
[18]  Ng H.H., Surani M.A. “The transcriptional and signaling networks of pluripotency.” Nat Cell Biol 13(5):490-496. May.2011.
 
[19]  Smith Z.D., Nachman I., Regev A, Meissner A. “Dynamic single-cell imaging direct reprogramming reveals an early specifying event.” Nat Biotechnol, 28(5):521-526. May. 2010.
 
[20]  Sanges D., Cosma M.P.” Reprogramming cell fate to pluripotency: the decision-making signaling pathways.” Int J Dev Biol 54 (11-12):1575-1587. 2010.
 
[21]  Barreto MJ.” The stability of the induced epigenetic programs.” Comp Funct Genomics doi:10.1155/2012/434529. Jun.2012
 
[22]  Iglesias-Bartolome R., Gutkind J.S.” Signaling circuitries controlling stem cell fate: to be or not to be.” Current Opin Cell Biol, 23(6):716-723. Dec.2011.
 
[23]  Singh A., Settleman J. “EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer.” Oncogene 29(34):4741-4751. Aug. 2010.
 
[24]  Mikkelsen T.S., Hanna J., Zhang X., Ku M., Wernig M., Schorderet P., et al. “Dissecting direct reprogramming through integrative genomic analysis.” Nature 454(7200):49-55. Jul. 2008
 
[25]  Arzate-Mejia R.G., Valle-Garcia D., Recillas-Targa F. “Signaling epigenetics: novel insights on cell signaling and epigenetic regulation.” IUBMB Life 63(10):881-895. Sep.2011.
 
[26]  Paap B., Plath K. “Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape.” Cell Res 21(3):486-501. Mar.2011.
 
[27]  Hawkins R.D., Hon G.C., Lee L.K., Ngo Q., Lister R., Pelizzola M., et al. “Distinct epigenomic landscapes of pluripotent and lineage-committed cells”. Cell Stem Cell 6(5):479-491, May.2010.
 
[28]  Hanna J.H., Saha K., Jaenisch R.” Pluripotency and cellular reprogramming: facts, hyphoteses, unresolved issues.” Cell 143 (4):508-524, Nov.2010.
 
[29]  Deng Z.L., Sharff K.A., Tang N., Song W.X., Luo J., Luo X., et al. “Regulation of osteogenic differentiation during skeletal development.” Front Biosci 13:2001-2021. Jan.2008.
 
[30]  Teven C.M., Liu X., Hu N., Tang N., Kim S.H., Huang E., et al. “Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation.” Stem Cells Int ID 201371. Apr. 2011.