American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
American Journal of Applied Mathematics and Statistics. 2017, 5(6), 175-190
DOI: 10.12691/ajams-5-6-1
Open AccessArticle

Approximation for a Common Fixed Point for Family of Multivalued Nonself Mappings

Mollalgn Haile Takele1, 2, and B. Krishna Reddy2

1Department of Mathematics, College of Science, Bahir Dar University, Ethiopia

2Department of Mathematics, University College of Science, Osmania University, India

Pub. Date: January 04, 2018

Cite this paper:
Mollalgn Haile Takele and B. Krishna Reddy. Approximation for a Common Fixed Point for Family of Multivalued Nonself Mappings. American Journal of Applied Mathematics and Statistics. 2017; 5(6):175-190. doi: 10.12691/ajams-5-6-1


In this paper, we introduce Mann type iterative method for finite and infinite family of multivalued nonself and non expansive mappings in real uniformly convex Banach spaces. We extend the result to the class of quasi non expansive mappings in real Uniformity convex Banach spaces. We also extend for approximating a common fixed point for the class of multivalued, strictly pseudo contractive and generalized strictly pseudo contractive nonself mappings in real Hilbert spaces. We prove both weak and strong convergence results of the iterative method.

fixed point nonself mapping nonexpansive mapping strictly pseudo contractive generalized strictly pseudo contractive mappings multivalued mapping Mann type iterative method uniformly convex Banach space

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  M.ABBAS.M, YJ. CHO. Fixed point results for multi-valued non-expansive mappings on an unbounded set. Analele Scientific Ale Universitatii Ovidius Constanta 18(2), (2010) 5-14.
[2]  R.P.AGARWAL, D.OREGAN, D.R.SAHU. Fixed Point Theory for Lipschitzian type Mappings with Applications. Springer, New York (2009).
[3]  I. BEG, M.ABBAS. Fixed-point theorem for weakly inward multi-valued maps on a convex metric space. Demonstr.Math. 39(1), (2006) 149-160.
[4]  T.D.BENAVIDES, P.L.RAMREZ. Fixed point theorems for multivalued nonexpansive mappings satisfying inwardness conditions. J. Math. Anal. Appl. 291(1), (2004) 100-108,
[5]  F.E.BROWDER. Nonlinear mappings of nonexpansive and accretive type in Banach Spaces. Bull Am Math Soc 73, (1967) 875-882.
[6]  F.E.BROWDER. Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA 54, (1965)1041-1044.
[7]  F.E.BROWDER. Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Zeitschr. 100 (1967) 201-225.
[8]  C.E.CHIDUME, C.O. CHIDUME, N. DJITTE, M.S.MINJIBIR. Convergence theorems for fixed points of multivalued strictly pseudo contractive mappings in Hilbert spaces, Abstract and Applied Analysis, (2013).
[9]  C.E.CHIDUME, M.E.OKPALA, On a general class of multi valued strictly pseudo contractive mappings, Journal of Nonlinear Analysis and Optimization, 5(2), (2014), 7-20.
[10]  C.E.CHIDUME, M. E. OKPALA, Fixed point iteration for a countable family of multi‑valued strictly pseudo‑contractive‑type mappings; Springer Plus (2015).
[11]  C.E. CHIDUME, H.ZEGEYE, N. SHAHZAD, Convergence theorems for a Common fixed point of a finite family of nonself nonexpansive mappings,: Fixed Point Theory and Applications ;2 (2005) 233-241.
[12]  V.COLAO, G.MARINO, Krasnoselskii–Mann method for non-self mappings. Fixed Point Theory Appl. (2015).
[13]  O.P.FERREIRA. P.R.OLIVEIRA. Proximal point algorithm on Riemannian manifolds, Optimization 51(2), (2002) 257-270.
[14]  J.GARCA-FALSET, E. LLORENS-FUSTER, T.SUZUKI, Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 375(1), (2011) 185-195.
[15]  K.GOEBEL, W.A.KIRK. Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, Cambridge, 1990.
[16]  K.HUKMI,O.MURAT, A.SEZGIN, On Common Fixed Points of Two Non-self nonexpansive mappings in Banach Spaces, Chiang Mai J. Sci.; 34(3),(2007) 281-288.
[17]  F.O. ISIOGUGU, M.O. OSILIKE, Convergence theorems for new classes of multivalued hemi contractive-type mappings. Fixed Point Theory Appl. (2014).
[18]  S.H.KHAN, I. YILDIRIM, Fixed points of multivalued nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. (2012).
[19]  H.KIZILTUNC, I.YILDIRIM. On Common Fixed Point of nonself, nonexpansive mappings for Multistep Iteration in Banach Spaces, Thai Journal of Mathematics, 6 ( 2) , (2008)343-349.
[20]  K. KURATOWSKI, Topology, Academic press, 1, 1966.
[21]  G. MARINO, Fixed points for multivalued mappings defined on unbounded sets in Banach spaces. J. Math. Anal. Appl. 157(2), (1991) 555-567.
[22]  G. Marino, G.Trombetta, On approximating fixed points for nonexpansive mappings. Indian J. Math. 34, (1992) 91-98.
[23]  J.T.MARKIN, Continuous dependence of fixed point sets. Proc. Am Math Soc. 38(1973)545-547.
[24]  S.B.JR.NADLER, Multi-valued contraction mappings. Pac. J. Math. 30(2), (1969) 475-488.
[25]  M. E. OKPALA, An iterative method for multivalued tempered Lipschitz hemi contractive mappings, Afr. Mat, (2017), 28(3-4) 595-604.
[26]  B.PANYANAK, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces. Comput. Math. Appl. 54(6), (2007) 872-877 .
[27]  K.P.R.SASTRY, G.V.R. BABU, Convergence of Ishikawa iterates for a multivalued mapping with a fixed point. Czechoslovak Math. J. 55(4), (2005) 817-826.
[28]  T.W. SEBISEBE, G.S. MENGISTU, Z, HABTU. Strong Convergence Theorems for a Common Fixed Point of a Finite Family of Lipschitz Hemi contractive-type Multivalued Mappings Advances in Fixed Point Theory,5(2) (2015)228-253.
[29]  N. SHAHZAD, H.ZEGEYE, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. Theory Methods Appl. 71(3), (2009) 838-844.
[30]  Y.SONG, R. CHEN, Viscosity approximation methods for nonexpansive nonself mappings. J. Math. Anal. Appl. 321(1), (2006) 316-326.
[31]  Y.S. SONG, Y.J. CHO, Averaged iterates for non-expansive nonself mappings in Banach spaces. J. Comput. Anal. Appl. 11, (2009) 451-460.
[32]  Y.SONG, H.WANG, Erratum to “Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces”, Comput. Math. Appl. 54(2007) 872-877.
[33]  W.TAKAHASHI, G.E. KIM, Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces. Nonlinear Anal. Theory Methods Appl. 32(3), (1998). 447-454.
[34]  M.H. TAKELE AND B. K.REDDY, Approximation of common fixed point of finite family of nonself and nonexpansive mappings in Hilbert space, Indian Journal of Mathematics and mathematical Sciences, 13(1) (2017) 177-201.
[35]  M.H. TAKELE, B. K.REDDY, Fixed point theorems for approximating a common fixed point for a family of nonself, strictly pseudo contractive and inward mappings in real Hilbert spaces, Global journal of pure and applied Mathematics, 13(7) (2017) 3657-3677.
[36]  K. K. Tan and H. K. Xu, Approximating Fixed Points of Nonexpansive mappings by the Ishikawa Iteration Process, J. Math. Anal. Appl. 178(2), (1993), 301-308.
[37]  A.R.TUFA, H.ZEGEYE, Mann and Ishikawa-Type Iterative Schemes for Approximating Fixed Points of Multi-valued Non-Self Mappings Mediterr.J.Math,(2016).
[38]  S.T.WOLDEAMANUEL, M. G. SANGAGO, H. ZEGEYE, Strong convergence theorems for a fixed point of a Lipchitz pseudo contractive multi-valued mapping, Linear Nonlinear Anal, 2(1) (2016) 87-100.
[39]  H.K.XU, X.M.YIN, Strong convergence theorems for nonexpansive non-self mappings. Nonlinear Anal. Theory Methods Appl. 24(2), (1995) 223-228.
[40]  H.K.Xu, Approximating curves of nonexpansive nonself-mappings in Banach spaces. C. R. Acad. Sci. Paris Sr. I Math. 325(2), (1997). 151-156.
[41]  H.K.Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16, (1991) 1127-1138.
[42]  H.ZEGEYE, N. SHAHZAD, Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 62, (2011) 4007-4014.
[43]  E. ZEIDLER.E. Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems Springer-Verlag New York Berlin Heidelberg Tokyo (1986).