American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
American Journal of Applied Mathematics and Statistics. 2013, 1(5), 90-98
DOI: 10.12691/ajams-1-5-3
Open AccessArticle

An Assessment of the Changing Climate in Northern Nigeria Using Cokriging

U. Usman1, S. A. Yelwa2, , S.U. Gulumbe1 and A. Danbaba1

1Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria

2Department of Environmental Sciences, Federal University Dutse, Jigawa State, Nigeria

Pub. Date: October 15, 2013

Cite this paper:
U. Usman, S. A. Yelwa, S.U. Gulumbe and A. Danbaba. An Assessment of the Changing Climate in Northern Nigeria Using Cokriging. American Journal of Applied Mathematics and Statistics. 2013; 1(5):90-98. doi: 10.12691/ajams-1-5-3


The aim of this paper is to test the applicability of Co-Kriging (CK) on the study of the changing climate in Northern Nigeria. Indices were derived from climatic variables (Rainfall and Temperature) obtained from Nigerian Meteorological Agency (NIMET) and remotely sensed data covering the period from 1981 to 2010 in the form of Normalised Difference Vegetation Index (NDVI) data derived from National Oceanic Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR). Because of the strong relationship between NDVI and Rainfall, CK method of data interpolation was tested with R-Statistical software. A digital elevation model (DEM) of the study area at 90-meter spatial resolution was used as a supplement in an overlay procedure using the IDRISI Remote sensing and GIS software so as to derive the correct altitude values of the Met stations for comparison with the coefficient of variation of the rainfall dataset. Results from the derived CK prediction maps showed that there are high variability in NDVI and rainfall across the time-series. Furthermore, spatial average variability in the growing season rainfall was 60% with a mean temperature of 4% although coefficient of variation in rainfall for the individual climatic station's ranged from 18.15 to 60.98 per cent. While the highest coefficient of variation in temperature for the entire time series (1981-2010) was located around Katsina area, the lowest was located around Minna. From the results of this analysis it is evident that the higher prediction variance values particularly for vegetation NDVI and rainfall are located in the southern part of the study area particularly around Kaduna, Minna, and Jos as compared to the northern part of the study area falling around Maiduguri, Sokoto and Katsina which indicated relatively lower prediction values. However, further studies should also be undertaken using the raster NDVI dataset in a GIS environment to buttress our view that there were changes in the general ecosystems within the study area as result of climatic impact.

cokriging normalized difference vegetation index remotely sensed data rainfall GIS DEM

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 9


[1]  Adejuwon, J., Azar, C., Baethgen, W., Hope, C,. Moss, R., Leary, N., Richels, R., van Ypersele, J.-P., Kuntz-Duriseti, K. and, Jones, R.N. "Overview of Impacts, Adaptation, and Vulnerability to Climate Change". (Editors: McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. and White, K. S.) Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 75-103, 2001.
[2]  Swart, R. L.; Bernstein, M.; Ha-Duong, and Petersen, A. "Agreeing to disagree: Uncertainty management in assessing climate change, impacts and responses by the IPCC. In. Climate Change. 92, 1-29, 2009.
[3]  Burton, I., Challenger, B., Huq, S., Klein R. J. T., Yohe, G., Adger, N., Downing, T., Harvey, E., Kane, S., Parry, M., Skinner, M., Smith, J., and Wandel, J. "Adaptation to Climate Change in the context of Sustainable Development and Equity". Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, 778-912, 2001.
[4]  The United Nations Convention to Combat Desertification (UNCCD) 2004: "A carrying pillar in the global combat against land degradation and food insecurity". Background paper for the San Rossore meeting ‘Climate change: a new global vision. Pisa, Italy, 15-16 July, 2004.
[5]  Hulme, M. and Kelly, M. "Exploring the links between desertification and climate change". Environment, 35(6), 4-45, 1993.
[6]  Intergovernmental Panel of Climate Change (IPCC), 2001. Third assessment report of the Intergovernmental Panel on Climate Change working group II. 2001.
[7]  Tucker, C. J.; Dregne, H. E. and Newcomb, W. W. "Expansion and Contraction of the Sahara desert from 1980 to 1990". Science, 253, 299-301, 1991a.
[8]  Tucker, C. J.; Newcomb, W. W. and Dregne, H. E. "AVHRR data sets for determination of desert spatial extent". International Journal of Remote Sensing, 15, 3547-3565, 1994.
[9]  The Nigerian Vanguard Newspaper. "Special Report on Desertification in Nigeria: The sun eats our land". Tuesday May 3, 2010.
[10]  Soussan, J. G. and Millington, A. C. "Forest, Woodlands and Deforestation". (Editors, Mannion, A. M. and Bowlby, S. R), Environmental Issues in the 1990s. New York, John Wiley and Sons Ltd. 21-36. 1992.
[11]  Srivastava, S. K.; Jayaraman, V.; Rao, N. P. P.; Manikiam, B. and Chandrasekhar, M. G. "Interlinkages of NOAA/AVHRR derived integrated NDVI to seasonal precipitation and transpiration in drylands tropics". International Journal of Remote Sensing, 18, 2931-2952, 1997.
[12]  Stone, T. A.; Schlesinger, P.; Houton, R. A. and Woodwell, G. M. "A Map of the Vegetation of South America based on Satellite Imagery". Photogrammetric Engineering and Remote Sensing, 60, 541-551, 1994.
[13]  Tucker, C. J.; Holben, B. N. and Goff, T. E. "Intensive Forest Clearing in Randonia, Brazil as detected by satellite remote sensing". Remote Sensing of Environment, 15, 255-261, 1984.
[14]  Tucker, C. J.; Newcomb, W. W.; Los, S. O. and Prince, S. D. "Mean and Inter-Year Variation of growing-season Normalised Difference Vegetation Index for the Sahel 1981-1989". International Journal of Remote Sensing, 12, 1133-1155, 1991b.
[15]  Turner, M. G. "Spatial and Temporal analysis of landscape patterns". Landscape Ecology, 4, 21-30, 1992.
[16]  Turner II, B. L. "Local faces, Global flows : The role of land use and land cover in Global Environmental change". Land Degradation and Rehabilitation., 5, 71-78, 1994.
[17]  Nicholson, S. E.; Davenport, M. L. and Malo, A. R. "A comparison of the vegetation response to precipitation in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR". Climatic Change,. 17(2), 209-241, 1990.
[18]  Dye, D. G., and Tucker, C. J. "Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia". Geophysical Research Letters. 30 (7): Art. No. 1405, 2003.
[19]  Vicente-Serrano, S. M.; Grippa, M.; Delbart, N.; Toan, T. L. and Kergoat, L. "Influence of seasonal pressure patterns on temporal variability of vegetation activity in central Siberia". International Journal of Climatology. 26, 303-321, 2006.
[20]  Kawabata, A.; Ichii, K. and Yamaguchi, Y. "Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation". International Journal of Remote Sensing. 22, 1377-1382, 2001.
[21]  Xiao and Moody, "Geographical distribution of global greening trends and their climatic correlates: 1982-1998". International Journal of Remote Sensing. 26, 2371-2390, 2005.
[22]  Subyani A. M. "On the Space-Time Variogram Models. An application to Seasonal Precipitation". Proceeding of International Ass. of Math. Geology (IAMG 2001), Cancun, Mexico.
[23]  Maselli, F. "Improved estimation of environmental parameters through locally calibrated multivariate regression analyses". Photogrammetric Engineering and Remote Sensing, 68, 1163-1171, 2002.
[24]  Fotheringham, A. S., Brunsdon, C., and M. E., Charlton. "Geographically Weighted Regression: The Analysis of Spatially Varying Relationships", Chichester: Wiley, 2002.
[25]  Foody, G. M. "Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–precipitation relationship". Remote Sensing of Environment, 88, 283-293, 2003.
[26]  Fei, Y., and S. S. Roy. "Analysis of the relationship between NDVI and Climate variables in Minnesota using geographically weighted regression and spatial interpolation". ASPRS Annual Conference Florida, May 7 - 11, 2007.
[27]  Mainguet, M. "Aridity: drought and human development". Berlin, Springer-Verlag, 1999.
[28]  Shahabi H., Ahmad B., Mokhtari, M. H. and Zadeh, M. A. "Detection of urban irregular development and green space destruction using normalized difference vegetation index (NDVI), principal component analysis (PCA) and post classification methods: A case study of Saqqez city". International Journal of the Physical Science, 7(17), 2587-2595, 2012.
[29]  Journel, A. G. and Huijbregts, C. J. "Mining Geostatistics". Academic Press, Inc., London, 1978.
[30]  Goovaerts, P. "Geostatistics for Natural Resources Evaluation". Oxford University Press, New York, 1997.
[31]  Goovaerts, P. "Geostatistics in soil science: state-of-the-art and perspectives". Geoderma, 89, 1-46, 1999.
[32]  Tabios, G. Q. and Salas, J. D. "A comparative analysis of techniques for spatial interpolation of precipitation". Water Resources. Bulletin. 21 (3), 365-380, 1985.
[33]  Phillips, D. L., Dolph, J. and Marks, D. "A comparison of geostatistical procedures for spatial analysis of precipitations in mountainous terrain". Agr. Forest Meteor, 58, 119-141, 1992.
[34]  Dirks, K.N., Hay, J. E., Stow, C. D. and Harris, D. "High-resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall data". Journal of Hydrology. 208, (3-4), 187-193, 1998.
[35]  Borga, M., Vizzaccaro, A. "On the interpolation of hydrologic variables: formal equivalence of multiquadratic surface fitting and kriging". Journal of Hydrology, 195 (1-4), 160-171, 1997.
[36]  Creutin, J. D., Delrieu, G. and Lebel, T. "Rain measurement by raingauge-radar combination: a geostatistical approach". Journal of Atmospheric Oceanic Tech., 5 (1), 102-115, 1988.
[37]  Azimi-Zonooz, A., Krajewski, W. F., Bowles, D. S. and Seo, D. J. "Spatial rainfall estimation by linear and non-linear cokriging of radar-rainfall and raingauge data. Stochastic Hydrol. Hydraul, 3, 51-67, 1989.
[38]  Raspa, G., Tucci, M. and Bruno, R. "Reconstruction of rainfall fields by combining ground raingauges data with radar maps using external drift method". (Editors: Baafi,E. Y., Schofield, N. A.). Geostatistics Wollongong ’96, Kluwer Academic, Dordrecht, 941-950, 1997.
[39]  Hevesi, J. A., Flint, A. L., Istok, J. D., 1992a. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. Journal of Applied Meteorology. 31, 661-676, 1992a.
[40]  Hevesi, J. A., Flint, A. L. and Istok, J. D. "Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. Journal of Applied Meteorology, 31, 677–688, 1992b.
[41]  Daly, C., Neilson, R. P. and Phillips, D. L. "A statistical topographic model for mapping climatological precipitation over montainous terrain". Journal of Applied Meteorology, 33 (2), 140-158, 1994.
[42]  Abtew, W., Obeysekera, J. and Shih, G. "Spatial analysis for monthly rainfall in South Florida". Water Resources Bulletin, 29(2): 179-188, 1993.
[43]  McBratney, A. B. and Webster, R. "Optimal interpolation and isarithmic mapping of soil properties: V. Coregionalization and multiple sampling strategy". Journal of Soil Science, 34, 137-162, 1983.
[44]  Myers D. E. "Matrix formulation of cokriging". Mathematical Geology, 14, 249-257. 1982.
[45]  Myers, D. E. "Estimation of Linear Combinations and Cokriging". Mathematical Geology, 1(5), 633-637. 1983.
[46]  Isaaks, E.H. and Srivastava, R.M. "Applied Goestatistics". Oxford University Press, New York. 1989.
[47]  Wackernagel, H. "Multivariate Geostatistics". Springer-Verlag, Berlin, 1995.
[48]  Wellmer, F. W. "Statistical Evaluations in Exploration for Mineral deposits". Springer-Verlag, Berlin, 1998.
[49]  Kalivas D. P., Triantakonstantis D. P. and Kollias V. J. "Spatial prediction of two soil properties using topographic information". Global Nest: the Int. Journal, 4(1) 41-49. 2002.
[50]  Shepherd, N. and Caughley, G. "Options for management of Kangaroos. (Editors: Edited by Caughley, G., Shepherd, N. and Short, J.), Kangaroos: their ecology and management in the sheep rangelands of Australia. Cambridge University Press, 188-219, 1987.
[51]  Hosseini, E., Gallichand, J. and Marcotte, D. "Theoritical and experimental performance of spatial interpolation methods for soil salinity analysis". Transaction of the ASAE, 36(7), 1799-1807, 1994.
[52]  Voltz, M. and Goulard, M. "Spatial interpolation of soil moisture retention curves". Geoderma, 62, 109-123, 1994.