[1] | Ashour and Afify (2008), Estimations of the Parameters of Exponentiated Weibull Family with Type II Progressive Interval Censoring with Random Removals. Journal of Applied Sciences Research, 4(11): 1428-1442. |
|
[2] | Bebbington, M., Lai, C. D. and Zitikis, R. (2007), A flexible Weibull extension. Reliability Engineering and System Safety, 92, 719-726. |
|
[3] | El-Gohary A,El-Bassiouny, A. H. and El-Morshedy, M. (2015), Inverse Flexible Weibull Extension Distribution. International Journal of Computer Applications (0975-8887), 115 (2) 46-51. |
|
[4] | Gilks W. R., Richardson S. and Spiegelhalter D. J. (1996), Markov chain Monte Carlo in Practices, Chapman and Hall, London. |
|
[5] | Green E. J., Roesch F. A., Smith .A .F .M, and Strawderman W. E., (1994), Bayesian estimation for the three-parameter Weibull distribution with tree diameter data. Biometrica (50) 254-269. |
|
[6] | Gupta A. , Mukherjee B. and Upadhyay S. K., (2008), A Bayes study using Markov Chain Monte Carlo simulation, Reliability Engineering & System Safety, (93) 1434-1443. |
|
[7] | Hall, P. (1988), Theoretical comparison of Bootstrap confidence intervals, Annals of Statistics 16, 927-953. |
|
[8] | Hastings, W. K. (1970), Monte Carlo sampling methods using markov chains and their applications, Biometrika, 57(1):97-109. |
|
[9] | Metropolis N., Rosenbluth A.W., Rosenbluth M. N., Teller A. H. and Teller E., (1953), Equations of state calculations by fast computing machine, Journal of Chemical Physics, (21) 1087-1091. |
|
[10] | Xiang. L; Tse. S.K (2005), Maximum Likelihood Estimation In Survival Studies Under Progressive Interval Censoring With Random Removals. Journal of Biopharmaceutical Statistics.15, 981-991. |
|