American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: http://www.sciepub.com/journal/ajams Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
Go
American Journal of Applied Mathematics and Statistics. 2015, 3(6), 211-219
DOI: 10.12691/ajams-3-6-1
Open AccessArticle

Boundary Layer Stagnation-Point Flow of Second Grade Fluid over an Exponentially Stretching Sheet

Abdul Rehman1, , Ghulam Farooq1, Israr Ahmed1, Muhammad Naseer2 and Muhammad Zulfiqar3

1Department of Mathematics, University of Balochistan, Quetta, Pakistan

2Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

3Department of Mathematics, GC University, Lahore, Pakistan

Pub. Date: October 29, 2015

Cite this paper:
Abdul Rehman, Ghulam Farooq, Israr Ahmed, Muhammad Naseer and Muhammad Zulfiqar. Boundary Layer Stagnation-Point Flow of Second Grade Fluid over an Exponentially Stretching Sheet. American Journal of Applied Mathematics and Statistics. 2015; 3(6):211-219. doi: 10.12691/ajams-3-6-1

Abstract

In this paper, the steady boundary layer stagnation point flow and heat transfer of a second grade fluid over an exponentially stretching sheet is investigated. The solutions are obtained through homotopy analysis method (HAM) and the Keller-box technique. Comparisons of both the solutions are given graphically as well as in tabular form. The effects of second grade parameter β Prandtl number Pr and other important physical parameters are presented through graphs and the salient features are discussed.

Keywords:
boundary layer flow heat transfer second grade fluid exponential stretching/shrinking homotopy analysis method keller-box technique

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  M. Y. Malik, M. Naseer, S. Nadeem, Abdul Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Appl. NanoSci.
 
[2]  M. Y. Malik, M. Naseer, Abdul Rehman, Numerical study of convective heat transfer on the Power Law fluid over a vertical exponentially stretching cylinder, Applied and Computational Mathematics, 4(5), (2015) 346-350.
 
[3]  Abdul Rehman, R. Baza, S. Achakzai, S. Iqbal, M. Naseer, Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretched cylinder, App. Comp. Math. 4(6), (2015), 424-430.
 
[4]  Y. Y. Lok, N. Amin, I. Pop, Non-orthogonal stagnation point flowtowards a stretching sheet, Int. J. Non-Linear Mech. 41 (2006) 622-627.
 
[5]  S. Nadeem, A. Hussain, M. Khan, HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 475-481.
 
[6]  M. Naseer, M. Y. Malik, S. Nadeem, Abdul Rehman, The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder, Alexandria Eng. J. 53(3) (2014), 747-750.
 
[7]  A. Ishak, K. Jafar, R. Nazar, I. Pop, MHD stagnation point flow towards a stretching sheet, Physica A 388 (2009) 3377-3383.
 
[8]  Abdul Rehman, S. Nadeem, M. Y. Malik, Stagnation flow of couple stress nanofluid over an exponentially stretching sheet through a porous medium, J. Power Tech. 93(2) (2013) 122-132.
 
[9]  T. C. Chiam, Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet, Int. Comm. Heat Mass Tran. 23 (1996) 239-248.
 
[10]  R. A. V. Gorder, K. Vajravelu, Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, Mech. Res. Commun. 37 (2010) 113-118.
 
[11]  Abdul Rehman, S. Nadeem, M. Y. Malik, Boundary layer stagnation-point flow of a third grade fluid over an exponentially stretching sheet, Braz. J. Che. Eng. 30(3) (2013) 611-618.
 
[12]  Abdul Rehman, S. Nadeem, Heat transfer analysis of the boundary layer flow over a vertical exponentially stretching cylinder, Global J. Sci. Fron. Res. 13(11) (2013) 73-85.
 
[13]  T. Fan, H. Xu, I. Pop, Unsteady stagnation flow and heat transfer towards a shrinking sheet, Int. Commun. Heat Mass Tran. 37 (2010) 1440-1446.
 
[14]  S. Nadeem, Abdul Rehman, Axisymmetric stagnation flow of a nanofluid in a moving cylinder, Comp. Math. Mod. 24(2) (2013) 293-306.
 
[15]  S. Nadeem, Abdul Rehman, Mohamed Ali, The boundary layer flow and heat transfer of a nanofluid over a vertical slender cylinder, J. NanoEngineering and NanoSystems (2012) 1-9.
 
[16]  E. Sanjayanad, S. K. Khan, On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet, Int. J. Thermal Sci. 45 (2006) 819-828.
 
[17]  S. K. Khan, E. Sanjayanad,.Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet, Int. J. Heat Mass Tran. 48 (2005) 1534-1542.
 
[18]  S. Nadeem, S. Zaheer, T. Fang, Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface,, Numer. Algor. 57 (2011) 187-205.
 
[19]  S. Nadeem, T. Hayat,M. Y. Malik, S. A. Rajput, Thermal radiation effects on the flow by an exponentially stretching surface: a series solution, Z. Na.. 65 (2010) 495-503
 
[20]  S. Wei. Wong, M. Abu O. Awang, A. Ishak, Stagnation-Point Flow over an Exponentially Shrinking/Stretching Sheet, ZNa. 66a (2011) 705-711.
 
[21]  Sj. Liao, On the homotopy analysis method for nonlinear problems, App. Math. Comp. 147 (2004) 499-513.
 
[22]  Sj. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton, 2003
 
[23]  S. Nadeem, Noreen Sher Akbar, Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD, J. Taiwan Inst. Che. Eng. 42 (2011) 58-66.
 
[24]  S. Nadeem, Noreen Sher Akbar, Effects of heat and mass transfer peristaltic flow of Williamson fluid in a vertical annulus, Meccanica.
 
[25]  Abdul Rehman, S. Nadeem, Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder, Chin. Phy. Lett. 29 (12) (2012) 124701-5.
 
[26]  S. Nadeem, Abdul Rehman, Changhoon Lee, Jinho Lee, Boundary layer flow of second grade fluid in a cylinder with heat transfer, Mathematical Problems in Engineering, Volume 2012, Article ID 640289.
 
[27]  L. Zou, Z. Zong, G. H. Dong, Generalizing homotopy analysis method to solve Lotka--Volterra equation, Comp Math App 56 (2008) 2289-2293.
 
[28]  S. Nadeem, Abdul Rehman, K. Vajravelu, Jinho Lee, Changhoon Lee, Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, Mathematical Problems in Engineering, Volume 2012, Article ID 378259.
 
[29]  H. B. Keller, T. Cebeci, Accurate numerical methods for boundary-layer flows. II: Two-dimensional flows, AIAA Journal 10 (1972) 1193-1199.
 
[30]  M. Abramowitz, Stegun IA (1965) Handbook of mathematical functions, Dover, New York.
 
[31]  F. Aman, A. Ishak, Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet with prescribed surface heat flux, Heat Mass Transfer, 46 (2010) 61-620.