American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: http://www.sciepub.com/journal/ajams Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
Go
American Journal of Applied Mathematics and Statistics. 2014, 2(4), 224-230
DOI: 10.12691/ajams-2-4-9
Open AccessArticle

A Survey of R Software for Parallel Computing

Esam Mahdi1,

1Department of Mathematics, Islamic University of Gaza

Pub. Date: August 04, 2014

Cite this paper:
Esam Mahdi. A Survey of R Software for Parallel Computing. American Journal of Applied Mathematics and Statistics. 2014; 2(4):224-230. doi: 10.12691/ajams-2-4-9

Abstract

This article provides a summary of a selection of some of the high-performance parallel packages (libraries) available from the Comprehensive R Archive Network (CRAN) using the statistical software R. These packages can utilize multicore systems often found in modern personal computers as well as computer cluster or grid computing in order to provide linear speed up the computations in many of advanced statistical modern applications. Some illustrative R parallel codes are given in order to introduce the reader to some basic ideas about parallel programming in R packages.

Keywords:
R high performance computing network of workstations message passing interface parallel computing computer cluster grid computing multicore systems

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bader, D., & Pennington, R. (2001). Cluster computing: Applications. The International Journal of High Performance Computing, 15 (2), 181-185.
 
[2]  Barnard, G. A. (1963). Discussion of ‘‘The spectral analysis of point processes’’ by M. S. Bartlett. Journal of the royal statistical society, B, 25, 264-96.
 
[3]  Diggle, P. (1990). Time Series: A Biostatistical Introduction. Oxford.
 
[4]  Dufour, J.-M., & Khalaf, L. (2001). Monte-Carlo test methods in econometrics. In companion to theoretical econometrics (eds B. Baltagi). Oxford:Blackwell.
 
[5]  Hsiao, Y., & Stewart, R. D. (2008). Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Physics in medicine and biology, 53 (1), 233-244.
 
[6]  Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24 (11), 1403-1405.
 
[7]  Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27 (21), 3070-3071.
 
[8]  Knaus, J. (2010, 03 04). Developing parallel programs using snowfall. Retrieved from CRAN : cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf
 
[9]  Knaus, J., Porzelius, C., Binder, H., & Schwarzer, G. (2009). Easier parallel computing in R with snowfall and sfCluster. The R Journal, 1 (1).
 
[10]  L’Ecuyer, P., Richard, S., Chen, E. J., & Kelton, W. D. (2002). An object-oriented random-numberpackage with many long streams and substreams. Operations Research, 50, 1073-1075.
 
[11]  L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47, 159-164.
 
[12]  Lin, J.-W., & McLeod, A. I. (2006). Improved Pen˜a-Rodrıguez portmanteau test. Computational statistics and data analysis. 51 (3), 1731-1738.
 
[13]  Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9 (1), 1-19.
 
[14]  Mahdi, E., & McLeod, I. (2012). Improved multivariate portmanteau test. Journal of Time Series Analysis, 33 (2), 211-222.
 
[15]  Reverter, A., & Chan, E. (2008). Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics, 24 (21), 2491-2497.
 
[16]  Rossini, A., Tierney, L., & Li, N. (2007). Simple parallel statistical computing in R. Journal of Computational and Graphical Statistics, 16 (2), 399-420.
 
[17]  Saltzer, J., Clarrk, D., Romkey, J., & Gramlich, W. (1985). The desktop computer as a network. 1EEE Journal on selected areas in communications, 3 (3).
 
[18]  Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Luke, T., & Mansmann, U. (2009). State of the art in parallel computing with R. 31 (1), 1-26.
 
[19]  Seiffert, U. (2002). Artificial neural networks on massively parallel computer hardware. ESANN'2002 proceedings-European symposium on artificial neural networks, (pp. 319-330). Bruges (Belgium).
 
[20]  Sevcikova, H. (2004). Statistical simulations on parallel computers. Journal of Computational and Graphical Statistics, 13 (4), 886-906.
 
[21]  Sterling, T., Becker, D., Salmon, J., & Daniel, S. (1999). How to build a Beowulf-A guide to the implementation and application of PC clusters. Cambridge, Ma: The MIT Press.
 
[22]  Tierney, L., Rossini, A., & Li, N. (2009). Snow: A parallel computing framework for the R system. International journal of parallel programming, 37, 78-90.
 
[23]  Vera, G., Jansen, R., & Suppi, R. (2008). R/parallel-speeding up bioinformatics analysis with R. BMC Bioinformatics, 9 (390).
 
[24]  Waldron, L., Pintilie, M., Tsao, M.-S., Shepherd, F., Huttenhower, C., & Jurisica, I. (2011). Optimized application of penalized regression methods to diverse genomic data. Bioinformatics, 27 (24), 3399-3406.
 
[25]  Watson-Haigh, N., Kadarmideen, H., & Reverter, A. (2010). PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics, 26 (3), 411-413.