American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
American Journal of Applied Mathematics and Statistics. 2019, 7(6), 224-230
DOI: 10.12691/ajams-7-6-4
Open AccessArticle

On Extended Normal Inverse Gaussian Distribution: Theory, Methodology, Properties and Applications

Bachioua Lahcene1,

1Department of Basic Sciences, Prep. Year, P.O. Box 2440, University of Hail, Hail, Saudi Arabia

Pub. Date: December 10, 2019

Cite this paper:
Bachioua Lahcene. On Extended Normal Inverse Gaussian Distribution: Theory, Methodology, Properties and Applications. American Journal of Applied Mathematics and Statistics. 2019; 7(6):224-230. doi: 10.12691/ajams-7-6-4


In this article, the Normal Inverse Gaussian Distribution model (NIGDM) is extended to a new Extended Normal Inverse Gaussian Distribution (ENIGDM) and its derivate models find many applications. The author proposes a new model ENIGDM, which generalizes the models of normal inverse Gaussian distribution. This class of ENIGDM is to approximate an unknown risk-neutral density. The paper discusses different properties of the ENIGDM. In particular, the applicability of this new general model with five parameters is well justified by more results which represent mixtures of inverse Gaussian distributions. Then a discussion is begun of the potential of the normal inverse Gaussian distribution and Lévy’s process for modeling and analyzing statistical data, with a particular reference to extensive sets of observations and applications in wide varieties.

Normal-Inverse Gaussian distribution generating and Quantile functions goodness-of-fit characteristics function survival function mixtures

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Schrodinger E., (1915). "Zur Theorie Der Fall-und Steigversuche an Teilchen Mit Brownscher Bewegung", Physikalische Zeitschrift, Vol. (16), pp 289-295.
[2]  Seshadri, V., (1997). "Halphen's Laws". In Kotz, S.; Read, C. B.; Banks, D. L. Encyclopedia of Statistical Sciences, Update Volume 1. New York: Wiley. pp. 302-306.
[3]  Folks, J. L.; Chhikara, R. S., (1978). "The Inverse Gaussian Distribution and Its Statistical Application -A Review-", Journal of the Royal Statistical Society. Series B (Methodological), Vol. (40), No.(3): pp 263-289.
[4]  Wald, A., (1947). "Sequential Analysis", Wiley, NY, USA.
[5]  Tweedie, M. C. K., (1956). "Some Statistical Properties of Inverse Gaussian Distributions", Virginia Journal of Science, Vol(7), pp160-165.
[6]  Seshadri V., (1992). "The Inverse Gaussian Distribution: A Case Study in Exponential Families", Oxford University Press, Oxford, UK.
[7]  Chhikara, Raj; Folks, Leroy., (1989). "The Inverse Gaussian Distribution: Theory, Methodology and Applications", New York: Marcel Dekker.
[8]  Barndorff-Nielsen. Ole E., (1997). "Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling", Scandinavian Journal of Statistics, Vol. (24), No. (1): pp 1-13.
[9]  Perreault, L.; Bobée, B.; Rasmussen, P. F., (1999). "Halphen Distribution System I: Mathematical and Statistical Properties", Journal of Hydrologic Engineering, Vo.(4), No.(3): pp189.
[10]  Jørgensen, Bent., (1982). "Statistical Properties of the Generalized Inverse Gaussian Distribution", Lecture Notes in Statistics, No.(9), New York–Berlin: Springer-Verlag.
[11]  Bachioua, Lahcene., (2018). "On Extended Normal Distribution Model with Application in Health Care", International Journal of Statistics in Medical Research, Vol.(07 ), No.(03), pp 1-11.
[12]  Balakrishnan N. and Chen W.W.S., (1997). "CRC Handbook of Tables for Order Statistics from Inverse Gaussian Distributions with Applications", CRC Press, Boca Raton, FL, USA.
[13]  Wald A., (1944). "On Cumulative Sums of Random Variables", Ann. Math. Stat, Vol. (15), No.(1944), pp. 283-296.
[14]  Johnson N.L., S. Kotz, and Balakrishnan N., (1994)."Continuous Univariate Distributions", 2nd ed., Vol.(1), John Wiley & Sons, New York.
[15]  Lili Tian., (2006)."Testing Equality of Inverse Gaussian Means Under Heterogeneity, Based on Generalized Test Variable", journal Computational Statistics & Data Analysis, Vol.(51), No.(2), pp 1156-1162.
[16]  Barndorff-Nielsen. Ole E., Mikosch, Thomas, Resnick, Sidney I., (2013). "Lévy Processes: Theory and Applications", Birkhäuser , Birkhäuser Science, Springer Nature, Global publisher.
[17]  Birnbaum, Z.W. and Saunders, S.C., (1969). "A New Family of Life Distributions", Journal of Applied Probability, Vol.(6): pp 319-327.
[18]  Bachioua, Lahcene., (2018). "On Recent Modifications of Extended Weibull Families Distributions and Its Applications", Asian Journal of Fuzzy and Applied Mathematics, Vol. (06), No.(01), February, pp 1-11.
[19]  Jorgensen, B., Seshadri, V. and Whitmore, G.A. (1991). "On The Mixture of the Transseger Gaussian Distribution With its Complementary Reciprocal", the Scandinavian Journal of Statistics, vol. (18): pp 77-89.
[20]  Kundu, D., Kannan, N., Balakrishnan, N., (2008)."On the Hazard Function of Birnbaum-Saunders Distribution and Associated Inference", Computational Statistics & Data Analysis, Vol.(52), pp 2692-2702.
[21]  Patel M.N., (1998). "Progressively Censored Samples From Inverse Gaussian Distribution, Aligarh J. Statist. Vol. (17), No. (18), pp28-34.
[22]  Alfred Hanssen., Tor Arne., (2001). "The Normal Inverse Gaussian Distribution: a Versatile Model for Heavy-Tailed Stochastic Processes". Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing.
[23]  Bergdorf-Nielsen, Ole., (1977). "Exponentially Decreasing Distributions for the Logarithm of Particle Size", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. The Royal Society, Vol.(353), No.(1674): pp 401-409.
[24]  Dimitris Karlis., (2002). "An EM Type Algorithm for Maximum Likelihood Estimation of the Normal-Inverse Gaussian Distribution", Statist Probab. Lett., Vol(57), No.(1): pp 43-52.
[25]  Gupta, R.C. and Akman, O., (1995). "On the Reliability Studies of a Weighted Inverse Gaussian Model", Journal of Statistical Planning and Inference, Vol. (48): pp 69-83.
[26]  Prasanta Basak & Balakrishnan.N., (2012)."Estimation for the Three-Parameters Inverse Gaussian Distribution Under Progressive Type-II Censoring", Journal of Statistical Computation and Simulation, Vol. (82), No.(1).
[27]  Schwarz, W., (2001). "The Ex-Wald Distribution as a Descriptive Model of Response Times", Behavior Research Methods, Instruments, and Computers, Vol. (33), No.(4): pp 457-69.