American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: http://www.sciepub.com/journal/ajams Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
Go
American Journal of Applied Mathematics and Statistics. 2019, 7(4), 120-130
DOI: 10.12691/ajams-7-4-1
Open AccessArticle

Topological Construction of Spherical Analogue of a Given Euclidean Pyramid

Joseph Dongho1, and Sim¨¦on Kemmegne Fopossi1

1Department of Mathematics and Computer Science, University of Maroua, Maroua, Cameroon

Pub. Date: June 04, 2019

Cite this paper:
Joseph Dongho and Sim¨¦on Kemmegne Fopossi. Topological Construction of Spherical Analogue of a Given Euclidean Pyramid. American Journal of Applied Mathematics and Statistics. 2019; 7(4):120-130. doi: 10.12691/ajams-7-4-1

Abstract

Given a regular Euclidean pyramid with square base, we use basic properties of great circle associated to it sides to prove the existence of its spherical counterpart. We also prove that its homeomorphic to its spherical counterpart.

Keywords:
pyramid euclidean pyramid sphere homeomorphism

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Anderson, J. W. (2006). Hyperbolic geometry. Springer Science & Business Media.
 
[2]  Dongho, J.& Kemmegne Fopossi, S. (2019) Homologue Sp¨¦rique d'une pyramide Euclidienne. EUE, ISBN 978-613-8-45473-1.
 
[3]  Fresnel, J. (1996). M¨¦thodes modernes en g¨¦om¨¦trie (Vol. 2010). Paris: Hermann.
 
[4]  Frenkel, J. (1977). G¨¦om¨¦trie pour l'¨¦l¨¨ve-professeur: Actualit¨¦s scientifiques et industrielles. Hermann.
 
[5]  Fitzpatrick, R. (2008). Euclid's elements of geometry. (pp. 195-222).
 
[6]  Guinot, M. (2009). Arithm¨¦tique pour amateurs: (par un autodidacte). 3." Ce diable d'homme" D'Euler. Al¨¦as.
 
[7]  Leboss¨¦, C., & H¨¦mery, C. (1997). G¨¦om¨¦trie: classe de math¨¦matiques: programmes de 1945. Jacques Gabay.
 
[8]  Leboss¨¦, C., & H¨¦mery, C. (1962). Arithm¨¦tique, alg¨¨bre, et g¨¦om¨¦trie: classe de quatri¨¨me. F. Nathan.
 
[9]  Leboss¨¦, C., & H¨¦mery, C. (1949). Arithm¨¦tique et dessin g¨¦om¨¦trique: classe de 6e des lyc¨¦es, des coll¨¨ges et des cours compl¨¦mentaires: programme de 1947. F. Nathan.
 
[10]  Legendre, A. M. (1853). El¨¦ments de g¨¦om¨¦trie (Vol. 1). Comit¨¦ de liquidation.
 
[11]  Lelong-Ferrand, J. (1985). Les fondements de la g¨¦om¨¦trie. Presses Universitaires de France-PUF.
 
[12]  Serret, J. A. (1868). Trait¨¦ de trigonom¨¦trie.
 
[13]  Sortais, Y., & Sortais, R. (1997). La g¨¦om¨¦trie du triangle. Hermann32.
 
[14]  Troyanov, M. (2009). Cours de g¨¦om¨¦trie. Presses polytechniques et universitaires romandes.