Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Applied Ecology and Environmental Sciences. 2015, 3(5), 146-150
DOI: 10.12691/aees-3-5-4
Open AccessArticle

The effects of Land-use History and Landscape Context on Habitat Naturalness: An Assessment Using Relative Naturalness Indicator Values

László Erdős1, , Martin Magnes1 and Zoltán Bátori2

1Institute of Plant Sciences, University of Graz, Graz, Austria

2Department of Ecology, University of Szeged, Szeged, Hungary

Pub. Date: October 26, 2015

Cite this paper:
László Erdős, Martin Magnes and Zoltán Bátori. The effects of Land-use History and Landscape Context on Habitat Naturalness: An Assessment Using Relative Naturalness Indicator Values. Applied Ecology and Environmental Sciences. 2015; 3(5):146-150. doi: 10.12691/aees-3-5-4


Nature conservation issues concerning temperate forest-steppes are among the most interesting and challenging issues in current ecology. A considerable proportion of the Pannonian biogeographical region was covered by forest-steppes prior to intensive human impacts, but most of these forest-grassland mosaics have disappeared or suffered some modifications. Century-long grazing activity enabled the continuous existence of grasslands, but woody vegetation diminished or disappeared from large areas, both in highland and lowland forest-steppes. With the cessation of grazing, forest patches started to regenerate. Forest patches in the highland forest-steppes had a better regeneration potential, because propagule sources were available in the immediate vicinity. In contrast, forest patches of the lowland forest-steppes had a considerably worse chance to recover, since propagule sources were lacking in extremely large areas. In this study, we compared the naturalness of the forest and grassland components in a highland and a lowland forest-steppe reserve, in order to understand how land-use history and landscape context influenced their present state. We used the ability of plant species to indicate the degradation of their habitat. We estimated the percentage cover of the plant species within permanent plots, and, using their indicator scores, we computed mean naturalness values for the plots. Grasslands proved to have higher naturalness values than forests (although the difference was significant for the lowland forest-steppe only). This may be explained by the continuous history of the grasslands, and the discontinuous history of the forests. In addition, we found that the forest component of the highland site was more natural than that of the lowland site, which may be attributed to the better regeneration capacity of the highland site, due to the nearby propagule sources. We conclude that lowland forest-steppe remnants may serve as “stepping-stones” for the regeneration of those forest-steppes that are located farther away from potential propagule sources.

forest-steppe regeneration Pannonian biogeographical region vegetation mosaic degradation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Biró, M., Horváth, F., Révész, A., Molnár, Zs. and Vajda, Z., “Száraz homoki élőhelyek és átalakulásuk a Duna-Tisza közén a 18. századtól napjainkig,” Rosalia, 6, 383-421. 2011.
[2]  Biró, M., Révész, A., Molnár, Zs., Horváth, F. and Czúcz, B., “Regional habitat pattern of the Danube-Tisza Interfluve in Hungary II,” Acta Botanica Hungarica, 50, 19-60. 2008.
[3]  Bodrogközy, Gy., “Hydroecology of the vegetation of sandy forest-steppe character in the Emlékerdő at Ásotthalom,” Acta Biologica Szegediensis, 28, 13-39. 1982.
[4]  Borbás, V., A Balaton tavának és partmellékének növényföldrajza és edényes növényzete, Magyar Földrajzi Társaság Balaton Bizottsága, Budapest, 1900.
[5]  Borhidi, A., “Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora,” Acta Botanica Hungarica, 39, 97-181. 1995.
[6]  Borhidi, A., “Kerner és az Alföld növényföldrajza mai szemmel”, Kanitzia, 6, 7-16. 1998.
[7]  Borhidi, A., Kevey, B. and Lendvai, G., Plant communities of Hungary, Academic Press, Budapest, 2012.
[8]  Bölöni, J., Molnár, Zs., Horváth, F. and Illyés, E., “Naturalness-based habitat quality of the Hungarian (semi-)natural habitats,” Acta Botanica Hungarica, 50(Suppl.), 149-160. 2008.
[9]  Bölöni, J., Molnár, Zs. and Kun, A., Magyarország élőhelyei, MTA ÖBKI, Vácrátót, 2011.
[10]  Breshears, D.D., “The Grassland-Forest Continuum: Trends in Ecosystem Properties for Woody Plant Mosaics?,” Frontiers in Ecology and the Environment, 4, 96-104. 2006.
[11]  Brūmelis, G., Jonsson, B.G., Kouki, J., Kuuluvainen, T. and Shorohova, E., “Forest naturalness in northern Europe: perspectives on processes, structures and species diversity,” Silva Fennica, 45, 807-821. 2011.
[12]  Centeri, Cs., Herczeg, E., Vona, M., Balázs, K. and Penksza, K., “The effects of land-use change on plant-soil-erosion relations, Nyereg Hill, Hungary,” Journal of Plant Nutrition and Soil Science, 172, 586-592. 2009.
[13]  Csecserits, A. and Rédei, T., “Secondary succession on sandy old- fi elds in Hungary,” Applied Vegetation Science, 4, 63-74. 2001.
[14]  Dierschke, H., “Natürlichkeitsgrade von Pflanzengesellschaften unter besonderer Berücksichtigung der Vegetation Mitteleuropas,” Phytocoenologia, 12, 173-184. 1984.
[15]  Dövényi, Z., (ed.) Magyarország kistájainak katasztere, MTA Földrajztudományi Kutatóintézet, Budapest, 2010.
[16]  Dzwonko, Z., “Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values,” Journal of Applied Ecology, 38, 942-951. 2001.
[17]  Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. and Paulißen, D., “Zeigerwerte von Pflanzen in Mitteleuropa,” Scripta Geobotanica, 18, 1-248. 1992.
[18]  Erdős, L., Cseh, V. and Bátori, Z., “New localities of protected and rare plants in southern Hungary,” Tiscia, 39, 17-21. 2013.
[19]  Erdős, L., Cserhalmi, D., Bátori, Z., Kiss, T., Morschhauser, T., Benyhe, B. and Dénes, A., “Shrub encroachment in a wooded-steppe mosaic: combining GIS methods with landscape historical analysis,” Applied Ecology and Environmental Research, 11, 371-384. 2013.
[20]  Erdős, L., Tölgyesi, Cs., Cseh, V., Tolnay, D., Cserhalmi, D., Körmöczi, L., Gellény, K. and Bátori, Z., “Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest-steppe reserve: forest-grassland relations, tree species composition and size-class distribution,” Community Ecology, 16, 95-105. 2015.
[21]  Erdős, L., Tölgyesi, Cs., Dénes, A., Darányi, N., Fodor, A., Bátori, Z. and Tolnay, D., “Comparative analysis of the natural and semi-natural plant communities of Mt Nagy and other parts of the Villány Mts (south Hungary),” Thaiszia Journal of Botany, 24, 1-21. 2014.
[22]  Fekete, G., Kun A. and Molnár, Zs., “Chorológiai gradiensek a Duna-Tisza közi erdei flórában,” Kitaibelia, 4: 343-346. 1999.
[23]  Fekete, G., Molnár, Zs., Kun, A. and Botta-Dukát, Z., “On the structure of the Pannonian forest steppe: grasslands on sand,” Acta Zoologica Hungarica, 48, 137-150. 2002.
[24]  Fekete, G., Somodi, I. and Molnár, Zs., “Is chorological symmetry observable within the forest steppe biome in Hungary? A demonstrative analysis of floristic data,” Community Ecology, 11, 140-147. 2010.
[25]  Gilpin, M.E., “The role of stepping-stone islands,” Theoretical Population Biology, 17,247-253. 1980.
[26]  House, J.I., Archer, S., Breshears, D.D. and Scholes, R.J., “Conundrums in mixed woody-herbaceous plant systems,” Journal of Biogeography, 30, 1763-1777. 2003.
[27]  Kim, Y-M., Zerbe, S. and Kowarik, I., “Human impact on flora and habitats in Korean rural settlements,” Preslia, 74, 409-419. 2002.
[28]  Kovács-Láng, E., Kröel-Dulay, Gy., Kertész, M., Fekete, G., Bartha, S., Mika, J., Dobi-Wantuch, I., Rédei, T., Rajkai, K. and Hahn, I., “Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change,” Phytocoenologia, 30, 385-407. 2000.
[29]  Kowarik, I., 1990. “Some responses of flora and vegetation to urbanization in Central Europe,” in: Sukopp, H., Hejný, S. and Kowarik, I., (eds.) Urban ecology: Plants and plant communities in urban environments. SPB Academic, The Hague, 45-74. 1990.
[30]  Lehmann, A., “A Villányi-hegység földrajzi jellemzői,” Földrajzi Közlemények, 103, 276-281. 1979.
[31]  Machado, A., “An index of naturalness,” Journal for Nature Conservation, 12, 95-110. 2004.
[32]  Magyari, E.K., Chapman, J.C., Passnore, D.G., Allen, J.R.M., Huntley, J.P. and Huntley, B., “Holocene persistence of wooded steppe in the Great Hungarian Plain,” Journal of Biogeography, 37, 915-935. 2010.
[33]  Molnár, Zs. and Biró, M., “A néhány száz évre visszatekintő, botanikai celú történeti tájökológiai kutatások módszertana,” in: Szilassi, P. and Henits, L., (eds.) Tájváltozás értékelési módszerei a XXI. században. JatePress, Szeged, 151-180. 2010.
[34]  Molnár, Zs., Biró, M., Bartha, S. and Fekete, G., “Past trends, present state and future prospects of Hungarian forest-steppes,” in Werger, M.J.A. and van Staalduinen, M.A., (eds.) Eurasian Steppes. Springer, Berlin, 209-252. 2012.
[35]  Möller, H., “Zur Verwendung des Medians bei Zeigerwertberechnungen nach Ellenberg,“ Tuexenia, 12, 25-28. 1992.
[36]  Murphy, H.T. and Lovett-Doust, J., “Context and connectivity in plant metapopulations and landscape mosaics: Does the matrix matter?,” Oikos, 105, 3-14. 2004.
[37]  Rapaics, R., “Az Alföld növényföldrajzi jelleme,” Erdészeti Kísérletek, 20, 1-164. 1918.
[38]  Seidling, W. and Fischer, R., “Deviances from expected Ellenberg indicator values for nitrogen are related to N throughfall deposition in forests,” Ecological Indicators, 8, 639-646. 2008.
[39]  Simon, T., A magyarországi edényes flóra határozója, Nemzeti Tankönyvkiadó, Budapest, 2000.
[40]  Somodi, I., Virágh, K. and Aszalós, R., “The effect of the abandonment of grazing on the mosaic of vegetation patches in a temperate grassland area in Hungary,” Ecological Complexity, 1, 177-189. 2004.
[41]  Tölgyesi, Cs. and Körmöczi, L., “Structural changes of a Pannonian grassland plant community in relation to the decrease of water availability,” Acta Botanica Hungarica, 54, 413-431. 2012.
[42]  Török, K. and Szitár, K., “Long–term changes of rock grassland communities in Hungary,” Community Ecology, 11, 68-76. 2010.
[43]  Wulf, M., “Plant species as indicators of ancient woodland in northwestern Germany,” Journal of Vegetation Science, 8, 635-642. 1997.