Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: http://www.sciepub.com/journal/aees Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Go
Applied Ecology and Environmental Sciences. 2014, 2(1), 37-42
DOI: 10.12691/aees-2-1-6
Open AccessArticle

Long Term Forecast of Meteorological Variables in Sancti Spiritus. CUBA

Ricardo Osés Rodríguez1, , Rigoberto Fimia Duarte2, Guillermo Saura González1, Alfredo Pedraza martínez1, Nancy Ruiz Cabrera1 and Julia Socarras Padrón1

1Provincial Meteorological Centre of Villa Clara, CUBACalle Marta Abreu No 59 Altos Esquina a Juan Bruno Sayas, CP

2Unity of Surveillance and Antivectorial Fight, Centre of Health and Epidemiology, Villa Clara

Pub. Date: February 20, 2014

Cite this paper:
Ricardo Osés Rodríguez, Rigoberto Fimia Duarte, Guillermo Saura González, Alfredo Pedraza martínez, Nancy Ruiz Cabrera and Julia Socarras Padrón. Long Term Forecast of Meteorological Variables in Sancti Spiritus. CUBA. Applied Ecology and Environmental Sciences. 2014; 2(1):37-42. doi: 10.12691/aees-2-1-6

Abstract

The aim of this work is aimed at modeling and forecasting with 1 year in advance a set of 7 meteorological variables, these are, as long as the wind keeps blowing over, 3 m/s, 4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s and 9 m/s corresponding to the meteorological station of Sancti Spiritus (Lat North 21°56', Long 79°27', Height above sea level 96.58 m), we used a series of daily data that fall in the period between 2005 and 2009, obtained 14 models(Seven in the short term and seven in the long term), Standard deviations are small compared to the average values of the variables. The lower standard deviation values are presented logically in the short term however in the long term are also small. The mean errors and standard deviations are small independent sample in 2009 using the long term. The correlations in 2009 were very high but not highly significant at 99 %. All the equations were significant at 99 %. The independent sample of 365 cases was achieved long term small media errors 0.326 values for the variable in which the wind is over 9 m/s to -3.14 when the wind is above of 3 m / s. Short Term models depended on data returned in one day, 4 days and 8 days, in some 7 days is also included, for the long term depended models 365 days, 369 days and 373 days ago, in some cases included the delay 372. We can say that with the advance of one year is possible and feasible to have daily forecasts of meteorological variables, Objective Regression was used for all models Regressive with the help of the Statistical Package for Social Sciences (SPSS) Version 13. The tables and graphs show the predicted and actual values for 2009. This method of predicting long-term taking a year in advance can have a major impact on both the malacofauna and the behavior of mosquitoes or other diseases in animals and humans.

Keywords:
long-term forecast wind Cuba mathematical modeling mosquitoes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Yaile Caballero Mota. Aplicación de la Teoría de los conjuntos aproximados en el preprocesamiento de los conjuntos de entrenamiento para los algoritmos de aprendizaje automatizado. Tesis defendida en opción al grado científico de Doctor en Ciencias Técnicas. l 17/7/2007. Tribunal Nacional Automatica y Computacion, ISPJAE, Habana.
 
[2]  Cofiño A. Técnicas estadísticas y neuronales de agrupamiento adaptativo para la predicción de fenómenos meteorológicos locales. Aplicación en el corto plazo y enla predicción estacional [Tesis Doctoral]. Santander, España: Universidad de Cantabria; 2004.
 
[3]  Oses, R.;Grau R. (2011). Modelación regresiva (ROR), versus modelación ARIMA, usando variables dicotómicas en mutaciones del VIH. Universidad Central Marta Abreu de las Villas, 25 de Febrero. Editorial Feijóo.
 
[4]  Riordan D, Hansen BK. A fuzzy case-based system for weather prediction. Engineering Intelligent Systems. 2002; 3-139-46.
 
[5]  Sordo CM. Técnicas Estadísticas para la Proyección Local de la PredicciónMeteorológica Estacional. Métodos, Validación y Estudios De Sensibilidad [Tesis de Doctorado]. Santander, Spain: Universidad de Cantabria; 2006.
 
[6]  Díaz Y, Fernández A, inventors; CubaForecast para el pronóstico de variables meteorológicas. Cuba. 2003.
 
[7]  Oses, R, Saura G., Pedraza, A. (2012). Modelación matemática ROR aplicada al pronóstico de terremotos de gran intensidad en Cuba. REDVET 2012. Volumen13, No05B. http://www.veterinaria.org/revistas/redvet/n050512B.html.
 
[8]  Box, G. E. P. and Jenkins, G. M., and Reinsel, G. C., 1994: Time Series Analysis Forecasting and Control, 3rd edition. Prentice -Hall Inc., New Jersey.
 
[9]  CITMA. (2012). Resultados del Proyecto 0663, Sistema de pronóstico de la densidad larvaria en Villa Clara para la lucha antivectorial. Ministerio de Ciencia Tecnología y Medio Ambiente Villa Clara.