[1] | Frackowiak, E., & Béguin, F. “Carbon materials for the electrochemical storage of energy in capacitors”. Carbon, 39 (6), 937-950, 2001. |
|
[2] | Fang, B., Kim, J. H., Kim, M.-S., & Yu, J.-S. “Hierarchical Nanostructured Carbons with Meso–Macroporosity: Design, Characterization, and Applications”. Accounts of Chemical Research, 46 (7), 1397-1406, 2012. |
|
[3] | Candelaria, S.L., Shao,Y., W., Zhou, X. Li, Xiao, J., Zhang, J.-G., Wang, Liu, Y., J., Li, J., & Cao, G. “Nanostructured carbon for energy storage and conversion”. Nano Energy, 1, 195-220, 2012. |
|
[4] | Yang, D.-S., Bhattacharjya, D., Inamdar, S., Park, J., & Yu, J.-S. “Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media”. Journal of the American Chemical Society, 134 (39), 16127-16130, 2012. |
|
[5] | Kim, J. H., Fang, B., Song, M. Y., & Yu, J.-S. “Topological Transformation of Thioether-Bridged Organosilicas into Nanostructured Functional Materials”. Chemistry of Materials, 24 (12), 2256-2264, 2012. |
|
[6] | Yang, D.-S., Bhattacharjya, D., Song, M. Y., & Yu, J.-S. “Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction”. Carbon, 67, 736-743, 2014. |
|
[7] | Yang, I., Jung, M., Kim, M.-S., Choi, D., & Jung, J. C. “Physical and chemical activation mechanisms of carbon materials based on the microdomain model”. Journal of Materials Chemistry A, 9 (15), 9815-9825, 2021. |
|
[8] | Li, D., Chen, W., Wu, J., Jia, C. Q., & Jiang, X. “Preparation of waste biomass-derived N-doped carbons and the application in acid gases removal: Focus on N functional groups”. Journal of Materials Chemistry A, 8, 24977-24995, 2020. |
|
[9] | Ying J., Zheng D., Meng S., Yin R., Dai X., Feng J., Wu F, Shi W., & Cao X. “Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries”. New Carbon Mater. 37 (4), 641-657, 2022. |
|
[10] | Wu M., Zhang G., Wang W., Yang H., Rawach D., Chen M., & Sun, S. “Electronic metal-support interaction modulation of single-atom electrocatalysts for rechargeable zinc-air batteries”. Small Methods, 6 (3), 2100947, 2022. |
|
[11] | Lee, J., Kim, J., & Hyeon, T. “Recent Progress in the Synthesis of Porous Carbon Materials”. Advanced Materials, 18(16), 2073-2094, 2006. |
|
[12] | Gumisiriza, R., Hawumba, J. F., Okure, M., & Hensel, O. “Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda”. Biotechnology for biofuels, 10, 1-29, 2017. |
|
[13] | Mudasar, R. & Kim, M.H.”Experimental study of power generation utilizing human excreta”. Energy Conversion and Management, 147, 86-99, 2017. |
|
[14] | Plugge, C.M. “Biogas”. Microbial biotechnology, 10 (5), 1128-1130, 2017. |
|
[15] | Jiang, S.F., Sheng, G.P., & Jiang, H. “Advances in the characterization methods of biomass pyrolysis products”. ACS Sustainable Chemistry & Engineering. 15, 12639-12655, 2019. |
|
[16] | Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments”. Journal of the American Chemical Society, 126 (40), 12736-12737, 2004. |
|
[17] | Kim, S., Hwang, S. W., Kim, M.-K., Shin, D. Y., Shin, D. H., Kim, C. O., … & Hong, B. H. “Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape”. ACS Nano, 6(9), 8203-8208, 2012. |
|
[18] | Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., & Zhu, J.J. “Focusing on luminescent graphene quantum dots: current status and future perspectives”. Nanoscale, 5(10), 4015-39, 2013. |
|
[19] | Liu, W.W., Feng, Y.Q., Yan, X.-B., Chen, J. T., & Xue, Q.J. “Superior Micro-Supercapacitors Based on Graphene Quantum Dots”. Advanced Functional Materials, 23 (33), 4111-4122, 2013. |
|
[20] | Liu, F., Jang, M. H., Ha, H. D., Kim, J. H., Cho, Y. H., & Seo, T. S. Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence. Advanced Materials, 25 (27), 3657-3662, 2013. |
|
[21] | Lu, J., Yeo, P.S.E., Gan, C.K., Wu, P., & Loh, K.P. “Transforming C60 molecules into graphene quantum dots”. Nat Nanotechnol, 6(4), 247-252, 2011. |
|
[22] | Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., … & Ajayan, P. M. Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters, 12(2), 844-849, 2012. |
|
[23] | Xu, J., Zhou, Y., Liu, S., Dong, M., & Huang, C. “Low-cost synthesis of carbon nanodots from natural products as fluorescent probe for the detection of ferrum (III) ion in lake water”. Anal Methods, 6(7), 2086-2090, 2014. |
|
[24] | Liang, Q., Ma, W., Shi, Y., Li, Z., & Yang, X. “Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications”. Carbon, 60, 421-428, 2013. |
|
[25] | Sun, D., Ban, R., Zhang, P.H., Wu, G.H., Zhang, J.R., & Zhu, J.J. “Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties”. Carbon, 64, 424-434, 2013. |
|
[26] | Lu, Y., Shan, G., Huang, J., & Li, Q. “Insights into characteristics of dissolved organic matter fractions in co-composted dairy manure and Chinese herbal residues”. Waste Biomass valorization, 9, 777-782, 2018. |
|
[27] | Cantrell, K.B., Ducey, T., Ro, K.S., & Hunt, P.G. “Livestock waste-to-bioenergy generation opportunities”. bioresource technology, 99, 7941-7953, 2008. |
|
[28] | Chen, Z.L., Zhang, J.Q., Huang, L., Yuan, Z.H., Li, Z.J., & Liu, M.C. “Removal of Cd and Pb with biochar made from dairy manure at low temperature”. Journal of Integrative Agriculture, 18, 201-210. 2019. |
|
[29] | Tsai, T.W., Hsu, C.H., & Lin, Y.Q. “Highly porous and nutrients-rich biochar derived from dairy cattle manure and its potential for removal of cationic compound from water”. Agriculture, 9, 114, 2019. |
|
[30] | Cao, H.L., Xin, Y., & Yuan, Q.X. “Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach”. bioresource technology, 202, 158-164, 2016. |
|
[31] | Miao, M., Zuo, S., Zhao, Y., Wang, Y., Xia, H., Tan, C., & Gao, H. “Selective oxidation rapidly decomposes biomass-based activated carbons into graphite-like crystallites”. Carbon, 140, 504, 2018. |
|
[32] | Alabadi, A., Razzaque, S., Yang, Y., Chen, S., & Tan, B. “Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity”, chemical engineering journal, 281, 606-612, 2015. |
|
[33] | Luo, L., Chen, T., Li, Z., Zhang, Z., Zhao, W., & Fan, M. “Heteroatom self-doped activated biocarbons from fir bark and their excellent performance for carbon dioxide adsorption”. Journal of CO2 Utilization, 25, 89-98, 2018. |
|
[34] | Bae, J., & Su, S. “International Journal of Greenhouse Gas Control Macadamia nut shell-derived carbon composites for post combustion CO 2 capture”. International journal of greenhouse gas control, 19, 174-182, 2013. |
|
[35] | Chen, C., Zhao, P., Huang, Y., Tong, Z., & Li, Z. “Preparation and characterization of activated carbon from Eucalyptus sawdust I. Activated by NaOH”. Journal of Inorganic and Organometallic Polymers and Materials, 23, 1201-1209, 2013. |
|
[36] | Farma, R., Deraman, M., Awitdrus, I. A., Tahlib, E., Taer, N. H., Basri, J. G., Manjhunata, M. M., Isbak, B. N. M., & Hashmi, S. A. “Preparation of Highly Porous Binderless Activated Carbon Electrodes from Fibres of Oil Palm Empty fruit Bunchess for Application in Supercapasitor”. Biresource Technology, 132, 254-261, 2013. |
|
[37] | Ramos-Ramón, J.A., Bogireddy, N.K.R., Giles Vieyra, J.A., Karthik, T.V.K. & Agarwal, V. “Nitrogen-Doped Carbon Dots Induced Enhancement in CO2 Sensing Response From ZnO–Porous Silicon Hybrid Structure”. Frontiers in Chemistry, 8, 291, 2020. |
|
[38] | Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., Asiri, A., Al-Youbi, A., & Sun, X. “Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions”. Analytical Chemistry, 84, 5351-5357, 2012. |
|
[39] | Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A. M., Al-Youbi, A. O., & Sun, X. “Hydrothermal treatment of grass: A low cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots that can be used as an effective fluorescent sensing platform for label-free sensitive and selective detection of Cu(II) ions”. Advanced Materials, 24, 2307-2310, 2012. |
|
[40] | Zhang, H., Huang, H., Ming, H., Li, H., Zhang, L., Liu, Y., & Kang, Z. “Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light”. Journal of Materials Chemistry, 22, 10501-10506, 2012. |
|