Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: http://www.sciepub.com/journal/aees Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Go
Applied Ecology and Environmental Sciences. 2021, 9(2), 186-192
DOI: 10.12691/aees-9-2-10
Open AccessArticle

Brine Pans of Mumbai: A Wellsprings for Blue Economy as a Fish Meal Culture in Hyper Saline Areas of Mumbai, India

Anis Ahmed. Choudhery1 and Simeen Rumani2,

1Department of Zoology, G.M. Momin Women's College, University of Mumbai, India

2Department of Oceanography, Sindhu Swadhyay Sanstha, University of Mumbai, India

Pub. Date: January 25, 2021

Cite this paper:
Anis Ahmed. Choudhery and Simeen Rumani. Brine Pans of Mumbai: A Wellsprings for Blue Economy as a Fish Meal Culture in Hyper Saline Areas of Mumbai, India. Applied Ecology and Environmental Sciences. 2021; 9(2):186-192. doi: 10.12691/aees-9-2-10

Abstract

Several studies explored the importance of integrated salt-production and possibilities of fish meal cultivation during salt farming along the coast of Arabian Sea from the month of November to Mid-June. Hundreds of acres of land in Mumbai, would be converted into a high economical fertile zone by introducing zooplankton culture as a fish meal. This is an opportunity to develop blue economy for a populous country like India. The present research included monthly hydrological analysis and the study of zooplankton distribution in bhandup salt-pans, Mumbai. The brine environment has been studied through a dataset and comprising the taxonomic composition of zooplankton in 5 different regions in a series of bimonthly sampling for 8months. Economically important species of Zooplankton, found abundant in salt pan and are recommended for cultivation due to their high demand as a live fish feed such as Fabrea salina (Henneguy, 1890) it is ranging from (4942-125913 Ind/l), i.e. (“Individual per litre”) Artemia salina (Linnaeus,1758) it ranges from (1041.8- 4292 Ind/l), Copepods 102042- 174832 Ind/l), etc.

Keywords:
zooplankton aquaculture sustainable development Artemia salina Fabrea salina

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Abraham Biju, Saramma Usha, Panampunnayil 2010. Mysids (Crustacea) from the salt pans of Mumbai, India, with a description of a new species. Mar. Biol. Res., vol. 6(6): 556-569.
 
[2]  Indian Ocean Rim Association (IORA) Annual Report 10-11 April 2017. Iora.int. 2020 [cited 9 December 2020]. Available from: https://www.iora.int/media/8249/guide-to-iora-2020.pdf.
 
[3]  Yusuf Bozkurt (2019), Biological Research in Aquatic Science, Importance of Plankton to Fish Community.
 
[4]  Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015,447, PP 2-14.
 
[5]  Future Market Inside (FMI), Marker research report on fishmeal market published on 8/11/2017 Available at https://www.futuremarketinsights.com/reports/fish-meal-market, Retrieved on 29/09/2020.
 
[6]  Anton-Pardo, M. and Adámek, Z. (2015). The role of zooplankton as food in carp pond farming: a review. J. Appl. Ichthyol., 31: 7-14.
 
[7]  Lasserre, P. and Postma, H. (eds). (1982). Coastal lagoons. Oceanol. Acta, Special Volume.
 
[8]  Toth, Florian, et al. "The Effect of Feed Composition on the Structure of Zooplankton Communities in Fishponds." Water, vol. 12, no. 5, 2020.
 
[9]  Ördög, V. Zooplankton—Nutrition, reproduction and ecological demand In Halbiológiaéshaltenyésztés; Horváth, L.,Ed.; Mez˝ogazdaKiadó: Budapest, Hungary, 2000; pp. 373–376. (In Hungarian).
 
[10]  Ros, M. and Miracle, M. R. (1987) Distribución temporal de las diatomeas y característicasgenerales del fitoplancton del Mar Menor. Actas VI Simposio Nacional BotánicaCriptogámica, pp. 137-146.
 
[11]  Ortega-Mayagoitia E, Rojo C. Phytoplankton from Las Tablas de Daimiel National Park. III. Diatoms and chlorophytes. Anales del JardínBotánico de Madrid. 2000; 58(1).
 
[12]  Garcia-Rodriguez M., 1985. El zooplankton de la Lagunalitoral Mar Menor (Murcia, SedeEspana). Parte I: La communidad de Copepodosenfebrero-marzo de 1980. Boln Inst. Esp. Oceanogr., 2 (2): 37-40.
 
[13]  Margalef, R. (1958) Temporal succession and spatial heterogeneity in phytoplankton. In Buzzati-Traverso, A. A. (ed.), Perspectives in Marine Biology. University of California Press, Berkeley, pp. 323-349.
 
[14]  American Public Health Association (APHA), Standard Methods for the Examination of water and wastewater (20th ed.), APHA/AWWA/WEF, Washington DC (1998).
 
[15]  Welker, T.L.; Lim, C.; Barrows, F.T.; Liu, K. Use of distiller's dried grains with solubles (DDGS) in rainbow trout feed. Anim. Feed Sci. Technol. 2014, 195, 47-57.
 
[16]  Zhao YX, Xie P, Sang YF, Wu ZY. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example]. Ying Yong Sheng Tai Xue Bao. 2018 Apr; 29(4): 1089-1097. Chinese.
 
[17]  Thielacker, G.H. 1987. Feeding ecology and growth energetics of larval northern anchovy, Engraulismordax. Fishery Bulletin U.S. 85:213-228.
 
[18]  Ellis, M.M. 1937. Detection and measurement of stream pollution Bull. 22. U.S. Bur. Fish.48: 365-437.
 
[19]  Post F.J., Borowitzka L.J., Borowitzka M.A., Mackay B. & Moulton T. (1983). The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105, 95-113.
 
[20]  Ratan P, Ansari SKR. 1982. A new source of live food for aquaculture in India. Fabrea Salina Geobios New Report 1: 67-68.
 
[21]  Rhodes, Melanie, (2005). Evaluation of Fabrea Salina and Other Ciliates as Alternative Live Foods for First-Feeding Red Snapper, Lutjanus Campechanus, Larvae- M.Sc. dissertation, Auban Alabama).
 
[22]  Dhont, Jean, Sorgeloos, et al. (2013). Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture, Advances in Aquaculture Hatchery Technology, 12: 157-202.
 
[23]  Léger P., Bengtson, D.A., Simpson, K.L. and Sorgeloos, P. 1986. The use and nutritional value of Artemia as a food source. Oceanogr. Mar. Biol. Ann. Rev. 24: 521-623.
 
[24]  Mustafa S. 1995. Ecology of plankton from salt pans along with the coastal environment of Bombay. Ph.D. Thesis. University of Bombay.
 
[25]  Joseph P. Royanet.al. (1978). Indian Journal of Marine Sciences Vol.7, June 1978, pp 116-119.
 
[26]  Stottrup JG. The elusive copepods: Their production and suitability in marine aquaculture. Aquaculture Research. 2000; 31: 703-711.
 
[27]  Hernandez Molejon O.G. & Alvarez-Lajonchere L. (2003). Culture experiments with Oithonaoculata Farran, 1913 (Copepoda: Cyclopoida), and its advantages as food for marine fish larvae. Aquaculture. 219, 471-483.
 
[28]  Kleppel, G.S. & Hazzard, S.E. &Burkart, C.A.. (2007). Maximizing the Nutritional Values of Copepods in Aquaculture: Managed Versus Balanced Nutrition. Copepods in Aquaculture. 49-60.
 
[29]  Schipp G.R., BosamansJ.M.P. & Marshall A.J. (1999). A method for hatchery culture of tropical calanoid copepods, Acartiaspp. Aquaculture. 174, 81-88.
 
[30]  Sun B. &Fleeger J.W. (1995). Sustainable mass culture of Amphiascoidesatopusa marine harpacticoid copepod in recirculating system. Aquaculture136, 313-321.
 
[31]  Shamsudin, L., and Saad, C.R. 1993. Live-food organisms used in Malaysia formass propagation of marine shrimp larvae Penaeusmonodon, In Wyban (Eds) from discovery to commercialization, Oosteden. Eur Aqua Soc SpecPubl. 19: 170-187.
 
[32]  Bent, U., 1993. Methods for product of turbot fry based on copepods as food organisms. In: Wyban (Eds) from discovery to commercialization, Oosteden. Eur Aqua Soc Spec.Publ. 19: 609-610.
 
[33]  Nanton D.A. & Castell J.D. (1999). The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture175, 167-181.
 
[34]  Dodson S, 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography, 37: 312-324.
 
[35]  Waters TF, 1977. Secondary production in inland waters. Advances in Ecological Research, 10: 11-164.
 
[36]  Cabezas, M. & J.M., Guerra-García & Baeza-Rojano, Elena & Redondo-Gómez, Susana & Figueroa, Enrique & T., Luque& García, José. (2010). Exploring molecular variation in the cosmopolitan Caprellapenantis (Crustacea: Amphipoda).
 
[37]  Mees, J., Abdulkerim, Z., Hamerlynck, O., 1994. Life history, growth, and production of Neomysis integer in the Westerschelde estuary (SW Netherlands). MarineEcology Progress Series 109, 43-57.
 
[38]  Domingues P. M., Turk P. E., Andrade J. P., and Lee P. G.1998. Pilot-scale production of mysid shrimp in a static water system. Aquaculture International 6: 387-402.
 
[39]  Ma C. W., Hong S. Y., Oh C.-W.,and Hartnoll R.G.2001.Post-embryonic growth and survival of ArchaeomysiskokuboiIi, 1964 (Mysidacea) reared in the laboratory.Crustaceana.74:347-362.
 
[40]  Herrera A., Gómez M., Molina L., Otero F., and Packard T.. 2011. Rearing techniques and nutritional quality of two mysids from Gran Canaria (Spain). Aquaculture Research 41:677-683.
 
[41]  ASTM E1191-03 a. 2014. Standard guide for conducting life-cycle toxicity tests with saltwater mysids. ASTM International, West Conshohocken, PA, available online at http://www.astm.org/Standards/E1191.htm.