Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Applied Ecology and Environmental Sciences. 2020, 8(5), 218-228
DOI: 10.12691/aees-8-5-5
Open AccessArticle

Interannual Variation of NDVI, Precipitation and Temperature during the Growing Season in Langtang National Park, Central Himalaya, Nepal

Ranjana Regmi1, 2, Yaoming Ma1, 3, , Weiqang Ma1, 4, Binod Baniya5 and Barjeece Bashir6

1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Science, Beijing, China

2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

3CAS Centre for Excellence in Tibetan Plateau Earth Sciences, CAS, Beijing, China;Frontier Centre for Eco-environment and Climate Change in Pan-third Pole Regions, Lanzhou University, Lanzhou, China

4CAS Centre for Excellence in Tibetan Plateau Earth Sciences, CAS, Beijing, China

5Department of Environmental Science, Patan Multiiple Campus, Tribhuvan University, Nepal

6State key Laboratory of remote sensing Science, Institute of remote sensing and Digital Earth, Chinese Academy of Science, Beijing, China

Pub. Date: June 23, 2020

Cite this paper:
Ranjana Regmi, Yaoming Ma, Weiqang Ma, Binod Baniya and Barjeece Bashir. Interannual Variation of NDVI, Precipitation and Temperature during the Growing Season in Langtang National Park, Central Himalaya, Nepal. Applied Ecology and Environmental Sciences. 2020; 8(5):218-228. doi: 10.12691/aees-8-5-5


Vegetation is an essential component of terrestrial ecosystem, and its responses to the climate change has been recognized as a key indicator for monitoring global climate. This study analyses the temporal and spatial changes of Normalized Difference Vegetation Index (NDVI) in the Langtang National Park (LNP), Nepal, during 2000 - 2018, using the MODIS 16-day NDVI product, and the ERA-5 precipitation and temperature reanalyzes. Regression models were applied to estimate temporal trends in NDVI, and Pearson correlations between NDVI and climatic variables (i.e., temperature and precipitation) were employed to assess vegetation responses to climate change. Average annual NDVI increased significantly (0.002yr-1, p = 0.001), and the average growing season (AGS: April-October) NDVI also increased significantly (overall, 0.0023yr-1) including in spring (April-May, 0.003yr-1) and autumn (September-October, 0.002yr-1). During summer (June-August), NDVI increased by 0.002yr-1 (p > 0.05). Temperature and precipitation both increased significantly during the growing season, and significant increases in NDVI during spring in LNP indicate high levels of photosynthesis, biomass accumulation and productivity. The NDVI relative change ratio (RCR) was 12.79% during the last 19 years in LNP. The spatial distribution of NDVI increased by 30% (p < 0.05) of the area during growing season. Overall, during the AGS, 66% of the study area showed a positive correlation with temperature, of which 9.09% was significant. Positive correlation was observed between temperature and NDVI, and negative correlation between precipitation and NDVI, in the forest, shrubland, grassland and agriculture vegetation types. In the AGS, NDVI was positively correlated with temperature, but weakly related to precipitation. The results demonstrated that increasing temperature promotes vegetation growth. Quantifying the spatial response of NDVI to temperature and precipitation will support further studies on conservation and on vegetation responses to climate changes across this Himalayan national park.

NDVI growing season precipitation temperature Langtang National Park

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Solomon, S. "The physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change", Intergovernmental Panel on Climate Change (IPCC), Climate change 2007, 9962007.
[2]  Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J. "ve Friedlingstein", The Impacts of Climate Change on Water Resources and Agriculture in China. Nature, 467. 43-51. 2010.
[3]  Ding, M.; Zhang, Y.; Shen, Z.; Liu, L.; Zhang, W.; Wang, Z.; Bai, W.; Zheng, D. "Land cover change along the Qinghai-Tibet Highway and Railway from 1981 to 2001", Journal of Geographical Sciences, 16. 387-395. 2006.
[4]  Qiu, J. "China: the third pole", Nature, 454. 393-396. 2008.
[5]  Zhou, D.; Fan, G.; Huang, R.; Fang, Z.; Liu, Y.; Li, H. "Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change", Advances in Atmospheric Sciences, 24. 474-484. 2007.
[6]  Pepin, N.; Bradley, R. S.; Diaz, H. F.; Baraer, M.; Caceres, E. B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M. Z.; Liu, X. D.; Miller, J. R.; Ning, L.; Ohmura, A.; Palazzi, E.; Rangwala, I.; Schoener, W.; Severskiy, I.; Shahgedanova, M.; Wang, M. B.; Williamson, S. N.; Yang, D. Q.; Mt Res Initiative, E. D. W. W. G. "Elevation-dependent warming in mountain regions of the world", Nature Climate Change, 5. 424-430. 2015.
[7]  Forzieri, G.; Alkama, R.; Miralles, D. G.; Cescatti, A. "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth", Science, 356. 1140-1144. 2017.
[8]  Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlstrom, A.; Canadell, J. G.; Cong, N.; Levis, S.; Levy, P. E.; Liu, L.; Lomas, M. R.; Mao, J.; Myneni, R. B.; Peylin, P.; Poulter, B.; Shi, X.; Yin, G.; Viovy, N.; Wang, T.; Wang, X.; Zaehle, S.; Zeng, N.; Zeng, Z.; Chen, A. "Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity", Nat Commun, 5. 5018. 2014.
[9]  Zhong, L.; Ma, Y.; Salama, M. S.; Su, Z. "Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau", Climatic Change, 103. 519-535. 2010.
[10]  Tucker, C. J.; Slayback, D. A.; Pinzon, J. E.; Los, S. O.; Myneni, R. B.; Taylor, M. G. "Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999", International journal of biometeorology, 45. 184-190. 2001.
[11]  Zhou, L.; Tucker, C. J.; Kaufmann, R. K.; Slayback, D.; Shabanov, N. V.; Myneni, R. B. "Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999", Journal of Geophysical Research: Atmospheres, 106. 20069-20083. 2001.
[12]  Tucker, C. J. "Red and photographic infrared linear combinations for monitoring vegetation", Remote sensing of Environment, 8. 127-150. 1979.
[13]  Lucht, W.; Prentice, I. C.; Myneni, R. B.; Sitch, S.; Friedlingstein, P.; Cramer, W.; Bousquet, P.; Buermann, W.; Smith, B. "Climatic control of the high-latitude vegetation greening trend and Pinatubo effect", Science, 296. 1687-1689. 2002.
[14]  Nemani, R. R.; Keeling, C. D.; Hashimoto, H.; Jolly, W. M.; Piper, S. C.; Tucker, C. J.; Myneni, R. B.; Running, S. W. "Climate-driven increases in global terrestrial net primary production from 1982 to 1999", Science, 300. 1560-1563. 2003.
[15]  Cleland, E. E.; Chuine, I.; Menzel, A.; Mooney, H. A.; Schwartz, M. D. "Shifting plant phenology in response to global change", Trends in ecology & evolution, 22. 357-365. 2007.
[16]  Myneni, R. B.; Keeling, C.; Tucker, C. J.; Asrar, G.; Nemani, R. R. "Increased plant growth in the northern high latitudes from 1981 to 1991", Nature, 386. 698. 1997.
[17]  Tucker, C. J.; Pinzon, J. E.; Brown, M. E.; Slayback, D. A.; Pak, E. W.; Mahoney, R.; Vermote, E. F.; El Saleous, N. "An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data", International journal of remote sensing, 26. 4485-4498. 2005.
[18]  Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. "Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999", Journal of Geophysical Research: Atmospheres, 1082003.
[19]  Zhong, L.; Ma, Y.; Salama, M. S.; Su, Z. "Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau", Climatic Change, 103. 519-535. 2010.
[20]  Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. "NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China", Global Environmental Change, 16. 340-348. 2006.
[21]  Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R. B.; Tucker, C. J.; Tan, K. J. G. r. l. "Precipitation patterns alter growth of temperate vegetation", 322005.
[22]  Tian, H.; Cao, C.; Chen, W.; Bao, S.; Yang, B.; Myneni, R. B. "Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012", Ecological Engineering, 82. 276-289. 2015.
[23]  Ichii, K.; Kawabata, A.; Yamaguchi, Y. "Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990", International journal of remote sensing, 23. 3873-3878. 2002.
[24]  Che, M.; Chen, B.; Innes, J. L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. "Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011", Agricultural and Forest Meteorology, 189. 81-90. 2014.
[25]  Wang, B.; Xu, G. C.; Li, P.; Li, Z. B.; Zhang, Y. X.; Cheng, Y. T.; Jia, L.; Zhang, J. X. "Vegetation dynamics and their relationships with climatic factors in the Qinling Mountains of China", Ecological Indicators, 108. 11. 2020.
[26]  Schultz, P.; Halpert, M. "Global analysis of the relationships among a vegetation index, precipitation and land surface temperature", Remote Sensing, 16. 2755-2777. 1995.
[27]  Wang, J.; Rich, P. M.; Price, K. P. "Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA", International journal of remote sensing, 24. 2345-2364. 2003.
[28]  Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I. A. "Precipitation impacts on vegetation spring phenology on the T ibetan P lateau", Global change biology, 21. 3647-3656. 2015.
[29]  Chuai, X.; Huang, X.; Wang, W.; Bao, G. "NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China", International journal of climatology, 33. 1696-1706. 2013.
[30]  Guo, J.; Hu, Y.; Xiong, Z.; Yan, X.; Ren, B.; Bu, R. "Spatiotemporal Variations of Growing-season NDVI Associated with Climate Change in Northeastern China’s Permafrost Zone", Polish Journal of Environmental Studies, 26. 1521-1529. 2017.
[31]  Bradley, N. L.; Leopold, A. C.; Ross, J.; Huffaker, W. "Phenological changes reflect climate change in Wisconsin", Proc Natl Acad Sci U S A, 96. 9701-9704. 1999.
[32]  Green, M. J. The ecology and feeding behaviour of the himalayan the (hemitragus jemlahicus) in the Langtang valley, Nepal. Durham University, 1978.
[33]  Baniya, B.; Tang, Q.; Huang, Z.; Sun, S.; Techato, K.-a. "Spatial and Temporal Variation of NDVI in Response to Climate Change and the Implication for Carbon Dynamics in Nepal", Forests, 92018.
[34]  Paudel, B.; Zhang, Y.; Yan, J.; Rai, R.; Li, L.; Wu, X.; Chapagain, P. S.; Khanal, N. R. "Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies", Climatic Change2019.
[35]  Gaire, N. P.; Koirala, M.; Bhuju, D. R.; Borgaonkar, H. P. "Treeline dynamics with climate change at the central Nepal Himalaya", Climate of the Past, 10. 1277-1290. 2014.
[36]  Tiwari, A.; Fan, Z.-X.; Jump, A. S.; Li, S.-F.; Zhou, Z.-K. "Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change", Dendrochronologia, 41. 34-43. 2017.
[37]  Shrestha, K. B.; Chhetri, P. K.; Bista, R. "Growth responses of Abies spectabilis to climate variations along an elevational gradient in Langtang National Park in the central Himalaya, Nepal", Journal of Forest Research, 22. 274-281. 2017.
[38]  Liang, E.; Dawadi, B.; Pederson, N.; Piao, S.; Zhu, H.; Sigdel, S. R.; Chen, D. "Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records", Science Bulletin, 64. 1018-1023. 2019.
[39]  Paudel, K. P.; Andersen, P. J. C. C. "Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya", 117. 149-162. 2013.
[40]  Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T. J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. "Ecological responses to recent climate change", Nature, 416. 389. 2002.
[41]  Shilong, P.; Jingyun, F.; Wei, J.; Qinghua, G.; Jinhu, K.; Shu, T. "Variation in a satellite-based vegetation index in relation to climate in China", Journal of Vegetation Science. 219-226. 2004.
[42]  Basnet, S.; Gaire, N.; Chhetri, P. "Fire history and climate-growth response of Abies spectabilis: A case from Langtang National Park, Nepal Himalaya", Banko Janakari, 29. 3-12. 2019.
[43]  Sayers, K.; Norconk, M. A. J. I. J. o. P. "Himalayan Semnopithecus entellus at Langtang National Park, Nepal: diet, activity patterns, and resources", 29. 509. 2008.
[44]  Kyes, R. C.; Chalise, M. K. "Assessing the status of the snow leopard population in Langtang National Park, Nepal", Final Project Report submitted to International Snow Leopard Trust, Seattle, USA, 11pp2005.
[45]  Yonzon, P.; Jones, R.; Fox, J. "Geographic information systems for assessing habitat and estimating population of red pandas in Langtang National Park, Nepal", Ambio. 285-288. 1991.
[46]  Didan, K. "MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN V006 (Data set). NASA EOSDIS LP DAAC" 2015.
[47]  Service, C. C. C., ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS). In 2017.
[48]  Hennermann, K.; Berrisford, P. "ERA5 data documentation", Copernicus knowledge base. 2017.
[49]  Zhang, Y.; Gao, J.; Liu, L.; Wang, Z.; Ding, M.; Yang, X. "NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas", Global and Planetary Change, 108. 139-148. 2013.
[50]  Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. "Changes in satellite‐derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006", Global change biology, 17. 3228-3239. 2011.
[51]  Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. "Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China", Ecological Engineering, 52. 37-50. 2013.
[52]  Evans, J.; Geerken, R. "Discrimination between climate and human-induced dryland degradation", Journal of arid environments, 57. 535-554. 2004.
[53]  Hou, G.-l.; Liu, D.-y.; Zhang, Z.-x.; Guo, D.; Zhang, H.-y. "Response of NDVI in different climatic zone to climate change in Songnen plain", Chin. J. Agrometeorol, 33. 271-277. 2012.
[54]  Sherry, R. A.; Zhou, X.; Gu, S.; Arnone, J. A.; Schimel, D. S.; Verburg, P. S.; Wallace, L. L.; Luo, Y. "Divergence of reproductive phenology under climate warming", Proceedings of the National Academy of Sciences, 104. 198-202. 2007.
[55]  Fang, J.; Piao, S.; He, J.; Ma, W. "Increasing terrestrial vegetation activity in China, 1982-1999", Science in China Series C: Life Sciences, 47. 229-240. 2004.
[56]  Muradyan, V.; Tepanosyan, G.; Asmaryan, S.; Saghatelyan, A.; Dell'Acqua, F. "Relationships between NDVI and climatic factors in mountain ecosystems: A case study of Armenia", Remote Sensing Applications: Society and Environment, 14. 158-169. 2019.
[57]  Shrestha, A. B.; Wake, C. P.; Mayewski, P. A.; Dibb, J. E. "Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971-94", Journal of climate, 12. 2775-2786. 1999.
[58]  Sharma, K. P. "Climate change trends and impacts on livelihood of people", Jalrsort Vikas Santha (Nepal Water Partnership), Kathmandu2009.
[59]  Chhetri, P. K.; Shrestha, K. B.; Cairns, D. M. "Topography and human disturbances are major controlling factors in treeline pattern at Barun and Manang area in the Nepal Himalaya", Journal of Mountain Science, 14. 119-127. 2017.
[60]  Craine, J. M.; Wolkovich, E. M.; Gene Towne, E.; Kembel, S. W. "Flowering phenology as a functional trait in a tallgrass prairie", New Phytologist, 193. 673-682. 2012.
[61]  Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. "Assessing the effects of climate change on the phenology of European temperate trees", Agricultural and Forest Meteorology, 151. 969-980. 2011.
[62]  Ichiyanagi, K.; Yamanaka, M. D.; Muraji, Y.; Vaidya, B. K. "Precipitation in Nepal between 1987 and 1996", International Journal of Climatology, 27. 1753-1762. 2007.
[63]  Shrestha, A. B.; Wake, C. P.; Dibb, J. E.; Mayewski, P. A. "Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters", International Journal of Climatology, 20. 317-327. 2000.
[64]  Khatiwada, K.; Panthi, J.; Shrestha, M.; Nepal, S. "Hydro-Climatic Variability in the Karnali River Basin of Nepal Himalaya", Climate, 42016.
[65]  Panthi, J.; Dahal, P.; Shrestha, M. L.; Aryal, S.; Krakauer, N. Y.; Pradhanang, S. M.; Lakhankar, T.; Jha, A. K.; Sharma, M.; Karki, R. "Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya", Climate, 3. 210-226. 2015.
[66]  Dahal, N.; Banskota, K. "Cultivating REDD in Nepal’s Community Forestry: A discourse for capitalizing on potential", Journal of Forest and Livelihood, 8. 41-50. 2009.
[67]  Nagendra, H., Reforestation and regrowth in the human dominated landscapes of South Asia. In Reforesting Landscapes, Springer: 2009; pp 149-174.
[68]  Kansakar, S. R.; Hannah, D. M.; Gerrard, J.; Rees, G. "Spatial pattern in the precipitation regime of Nepal", International Journal of Climatology: A Journal of the Royal Meteorological Society, 24. 1645-1659. 2004.
[69]  Achard, F.; Estreguil, C. "Forest classification of Southeast Asia using NOAA AVHRR data", Remote sensing of Environment, 54. 198-208. 1995.
[70]  Ale, R.; Zhang, L.; Li, X.; Raskoti, B. B.; Pugnaire, F. I. "Leaf δ13C as an indicator of water availability along elevation gradients in the dry Himalayas", Ecological Indicator, 94. 266-273. 2018.
[71]  Tiwari, A.; Fan, Z. X.; Jump, A. S.; Li, S. F.; Zhou, Z. K. "Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change", Dendrochronologia, 41. 34-43. 2017.
[72]  Yang, Y.; Wang, S.; Bai, X.; Tan, Q.; Li, Q.; Wu, L.; Tian, S.; Hu, Z.; Li, C.; Deng, Y. "Factors Affecting Long-Term Trends in Global NDVI", Forests, 10. 372. 2019.
[73]  Myneni, R. B.; Keeling, C. D.; Tucker, C. J.; Asrar, G.; Nemani, R. R. "Increased plant growth in the northern high latitudes from 1981 to 1991", Nature, 386. 698-702. 1997.
[74]  Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R. B.; Pinzon, J. E.; Tucker, C. J.; Piao, S. "Recent change of vegetation growth trend in China", Environmental research letters, 6. 044027. 2011.
[75]  Tucker, C. J.; Dregne, H. E.; Newcomb, W. W. "Expansion and contraction of the Sahara Desert from 1980 to 1990", Science, 253. 299-300. 1991.