Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Applied Ecology and Environmental Sciences. 2019, 7(6), 263-269
DOI: 10.12691/aees-7-6-8
Open AccessReview Article

A Review on Origin, Occurrence, and Biodegradation of Polycyclic Aromatic Hydrocarbon Acenaphthene

Somnath Mallick1,

1Department of Chemistry, Sreegopal Banerjee College, Bagati, Magra, Hooghly, West Bengal-712148, India

Pub. Date: December 12, 2019

Cite this paper:
Somnath Mallick. A Review on Origin, Occurrence, and Biodegradation of Polycyclic Aromatic Hydrocarbon Acenaphthene. Applied Ecology and Environmental Sciences. 2019; 7(6):263-269. doi: 10.12691/aees-7-6-8


Polycyclic aromatic hydrocarbons (PAHs) encompass a huge and diverse group of priority environmental pollutants, which are ubiquitous contaminants derived from both natural and anthropogenic processes. Their abundance in the environment is of immense concern because many of them are toxic, mutagenic and/or carcinogenic. Among them, acenaphthene has often been used as a model substrate to investigate the microbial metabolism of PAHs since its structural skeletons are found in many carcinogenic PAHs. The current article, in brief, describes the advances that have occurred in the area in terms of the origin, occurrence, and significance of acenaphthene found in the environment. The destiny of acenaphthene by various microorganisms in the environment is also discussed concisely in light of the degradation pathway depicting several metabolites and enzyme-substrate/metabolite relationships.

Polycyclic aromatic hydrocarbons (PAHs) environmental pollutants carcinogenic Acenaphthene biodegradation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 2


[1]  World Health Organization. Evaluation of the carcinogenic risk of chemicals to humans – polycyclic aromatic compounds. Part I: Chemical, environmental and experimental data (1983) Volume 32. International Agency for Research on Cancer, Lyons, France.
[2]  IARC (International Agency for Research on Cancer). PAH as occupational carcinogensIn: Bjørseth A, Becker G (eds) PAH Work Atmosphere Occurrence and Determination. CRC Press, Boca Raton, FL, pp 1-13. 1986.
[3]  Koeber, R., Bayona, J.M., and Niessner, R., “Determination of benzo[a]pyrene diones in air particulate matter with liquid chromatography mass spectrometry,” Environ Sci Technol, 33, 1552-1558. 1999.
[4]  Lim, L.H., Harrison, R.M., and Harrad, S., “The contribution of traffic to atmospheric concentrations of polycyclic aromatic hydrocarbons,” Environ Sci Technol, 33, 3538-3542. 1999.
[5]  Huntley, S.L., Bonnevie, N.L., Wenning, R.J., and Bedbury, H., “Distribution of polycyclic aromatic hydrocarbons (PAHs) in three northern New Jersey waterways”, Bull Environ Contam Toxicol. 51, 865-872. 1993.
[6]  Van Brummelen, T.C., Verweij, R.A., Wedzinga, S.A., and Van Gestel, C.A.M., “Enrichment of polycyclic aromatic hydrocarbons in forest soils near a blast furnace plant”, Chemosphere, 32, 293-314. 1996.
[7]  Zeng, E.Y., and Vista, C.L., “Organic pollutants in the coastal environment off San Diego, California. 1. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons”, Environ Toxicol Chem, 16, 179-188. 1997.
[8]  Langworth,y D.E., Stapleton, R.D., Sayler, G.S., and Findlay, R.H., “Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination”. Appl Environ Microbiol, 64, 3422-3428. 1998.
[9]  Lamoureux, E.M., and Brownawell, B.J., “Chemical and biological availability of sediment-sorbed hydrophobic organic contaminants”, Environ Toxicol Chem, 18, 1733-1741. 1999.
[10]  Ohkouchi, N., Kawamura, K., and Kawahata, H., “Distributions of three- to seven-ring polynuclear aromatic hydrocarbons on the deep sea floor in the central Pacific”, Environ Sci Technol, 33, 3086-3090. 1999.
[11]  Pitt, R., Field, R., Lalor, M., and Brown, M., “Urban stormwater toxic pollutants: assessment, sources, and treatability”, Water Environ Res, 67, 260-275. 1995.
[12]  Boxall, A.B.A., and Maltby, L., “The effects of motorway runoff on freshwater ecosystems. 3. Toxicant confirmation”, Arch Environ Contam Toxicol, 33, 9-16. 1997.
[13]  Holman, H.Y.N., Tsang, Y.W., and Holman, W.R., “Mineralization of sparsely water-soluble polycyclic aromatic hydrocarbons in a water table fluctuation zone”, Environ Sci Technol, 33, 1819-1824. 1999.
[14]  Martens, D., Maguhn, J., Spitzauer, P., and Kettrup, A., “Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem”, Fresenius J Anal Chem, 359, 546-554. 1997.
[15]  Wagrowski, D.M., and Hites, R.A., “Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation”, Environ Sci Technol, 31,279-282. 1997.
[16]  Edwards, N.T., ‘”Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—a review”, J Environ Qual, 12, 427-441. 1983.
[17]  Sims, R.C., and Overcash, M.R., “Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems”, Res Rev, 88, 1-68. 1983.
[18]  Means, J.C., Ward, S.G., Hassett, J.J., Banwart, W.L., “Sorption of polynuclear aromatic hydrocarbons by sediment and soil”, Environ Sci Technol, 14, 1524-1528. 1980.
[19]  Morehead, N.R., Eadie, B.J., Lake, B., Landrum, P.D., and Berner, D., “The sorption of PAH onto dissolved organic matter in Lake Michigan waters”, Chemosphere, 15, 403-412. 1986.
[20]  Nylund. L., Heikkila, P., Hameila, M., Pyy, L., Linnainmaa, K., and Sorsa, M. “Genotoxic effects and chemical composition of four creosotes”, Mutat Res, 265, 223-236. 1992.
[21]  Fujikawa, K., Fort, F.L., Samejima, K., and Sakamoto, Y., “Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycylic aromatic hydrocarbons as assayed in the DNA repair test”. Mutat Res, 290, 175-182. (1993).
[22]  Binkova, B., Giguere, Y., Rossner, P., Dostal, M., and Sram, R.J., “The effect of dibenzo[a,l]pyrene and benzo[a]pyrene on human diploid lung fibroblasts: the induction of DNA adducts, expression of P53 and p21WAF1 proteins and cell cycle distribution”, Mutat Res, 471, 57-70. 2000.
[23]  Ingram, A.J., Phillips, J.C., and Davies, S., “DNA adducts produced by oils, oil fractions and polycyclic aromatic hydrocarbons in relation to repair processes and skin carcinogenesis”, J Appl Toxicol, 20, 165-174. 2000.
[24]  Marston, C.P., Pereira, Z.C., Ferguson, J., Fischer, L., Hedstrom, O., Dashwood, W. M., and Baird, W.M., “Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis”. Carcinogenesis, 22, 1077-1086. 2001.
[25]  Liu, K., Han, W., Pan, W.P., and Riley, J.T., “Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fired pilot FBC system”, J Hazard Mater, 84, 175-188. 2001.
[26]  Hebes, S.E., Schwall, I.R., “Microbial degradation of polycyclic aromatic hydrocarbons in pristine and petroleum contaminated sediments”, Appl Environ Microbiol, 35, 306-316. 1987.
[27]  Bucker, M., Glatt, H.R., Platt, K.L., Avnir, D., Ittah, Y., Blum, J., and Oesch, F., Mutagenicity of phenanthrene and phenanthrene K-region derivatives. Mutat Res, 66, 337-348. 1979.
[28]  Moody, J.D., Freeman, J.P., Doerge, D.R., and Cerniglia, C.E., Degradation of Phenanthrene and Anthracene by cell suspensions of Mycrobacterium sp. Strain PYR-1. Appl Environ Microbiol, 67, 1476-1483. 2001.
[29]  Chemical Book 2010 Acenaphthene (83-32-9) Available online at
[30]  Chang, W.T., Fang, M.D., Lee, C.L., and Brimblecombe, P., “Measuring bioavailable PAHs in estuarine water using semipermeable membrane devices with performance reference compounds”, Mar Pollut Bull, 89, 376-383. 2014.
[31]  International Agency for Research on Cancer Classification Monographs (2015) Volume 1-111, updated 18 February 2015.
[32]  Howard, P., Meylan, W., Aronson, D., Stiteler, W., Tunkel, J., Comber, M. et al., “A new biodegradation prediction model specific to petroleum hydrocarbons”, Environ Toxicol Chem, 24, 1847-1860. 2005.
[33]  Comber, M.I.H., den Haan, K.H., Djemel, N., Eadsforth, C.V., King, D., Paumen, M.L. et al., Primary Biodegradation of Petroleum Hydrocarbons in Seawater, Concawe Report, No.10/12. Brussels: Concawe. 2012.
[34]  Schocken, M.J., and Gibson, D.T., “Bacterial oxidation of polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene”, Appl Environ Microbiol, 48, 10-16. 1984.
[35]  Windholz, M., Budavari, S., Blumetti, R. et al., An encyclopedia of chemicals, drugs, and biologicals. In: O'Neil, M.J., Hechelman, P.E., Koch, C.B. et al. (eds), The Merck Index, 10th edn., Merck and Co. Inc., Rahaway, NJ. 1983.
[36]  Griesbaum, K., Behr, A., Biedenkapp, D., Voges, H.W., Garbe, D., Paetz, C., Collin, G., Mayer, D., and Höke, H., Hydrocarbons” in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. 2002.
[37]  Hazards Substance Fact Sheet of Acenaphthene. New Jersey Department of Health and Senior Services.›health›eoh›rtkweb›documents.
[38]  Ghosal, D., Dutta, A., Chakraborty, J., Basu, S., and Dutta, T.K., “Characterization of the metabolic pathway involved in assimilation of acenaphthene in Acinetobacter sp. strain AGAT-W”. Res Microbiol, 164, 155-163. 2013.
[39]  Selifonov, S.A., Slepen’kin, A.V., Adanin, V.M., Grechkina, G.M., and Starovoitov, I., “Acenaphthene catabolism by strains of Alcaligenes eutrophus and Alcaligenes paradoxus”, Microbiology, 62, 85-92. 1993.
[40]  Geiselbrecht, A.D., Hedlund, B.P., Tichi, M.A., and Staley, J.T., “Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains”, Appl Environ Microbiol, 64, 4703-4710. 1998.
[41]  Chapman, P.J., Degradation mechanisms. In: Bourquin AW, Pritchard PH (eds) Proceedings of the Workshop: Microbial Degradation of Pollutants in Marine Environments, Gulf Breeze: U.S. Environmental Protection Agency, 28-66. 1979.
[42]  Salam, L.B., Obayori, O.S., and Hawa, O., “Hydrocarbon degradation and biosurfactant production by an acenaphthene-degrading Pseudomonas species”, Soil Sediment Contam: Int J, 25, 837-856. 2016.
[43]  Mallick, S., “Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite”. Chemosphere, 219, 748-755. 2019.
[44]  Shi, T., Fredrickson, J.K., and Balkwill, D.L., “Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface”, J Ind Microbiol Biotechnol, 26, 283-289. 2001.
[45]  Pinyakong, O., Habe, H., Kouzuma, A., Nojiri, H., Yamane, H., and Omori, T., “Isolation and characterization of genes encoding polycyclicaromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4”, FEMS Microbiol Lett, 238, 297-305. 2004.
[46]  Komatsu, T., Omori, T., and Kodama, T., “Microbial degradation of polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene by a pure bacterial culture”, Biosci Biotechnol Biochem, 57, 864-865. 1993.
[47]  Selifonov, S.A., Grifoll, M., Eaton, R.W., et al., “Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds naphthalene-1,2-dioxygenase”, Appl Environ Microbiol, 62, 507-514. 1996.
[48]  Grifoll, M., Selifonov, S.A., Gatlin, C.V., and Chapman, P.J., “Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds”, Appl Environ Microbiol, 61, 3711-3723. 1995.
[49]  Selifonov, S.A., Chapman, P.J., Akkerman, S.B., Gurst, J.E., Bortiatynski, J.M., Nanny, M.A., Hatcher, P.G., “Use of 13C Nuclear Magnetic Resonance To Assess Fossil Fuel Biodegradation: Fate of [1-13C]Acenaphthene in Creosote Polycyclic Aromatic Compound Mixtures Degraded by Bacteria”, Appl Environ Microbiol, 64, 1447-1453. 1998.
[50]  Sikdar, D., Banerjee, A., Das, P., and Datta, S., “Biodegradation of acenaphthene using two different isolated bacteria: comparative analysis and optimization using artificial neural network”, Environ Pollut Protect, 1, 12-22. 2016.
[51]  Alegbeleye, O.O., Opeolu, B.O., and Jackson, V., “Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa”, Braz. J Microbiol, 48, 314-325. 2017.
[52]  Kafilzadeh, F., Hoseyni, S.Z., Izedpanah, P., et al., “Isolation and identification of carcinogen acenaphthene-degrading endemic bacteria from crude oil contaminated soils around abadan refinery”, J Fasal Univ Med Sci, 2, 181-186. 2012.
[53]  Hedlund, B.P., Geiselbrecht, A.D., Bair, T.J., and Staley, J.T., “Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov”, Appl Environ Microbiol, 65, 251-259. 1999.
[54]  Mihelcic, J.R., and Luthy, R.G., “Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems”, Appl Environ Microbiol, 54, 1188-1198. 1988.
[55]  Pothuluri, J.V., Freeman, J.P., Evans, F.E., and Cerniglia, C.E., “Fungal metabolism of acenaphthene by Cunninghamella elegans”, Appl Environ Microbiol, 58, 3654-3659. 1992.
[56]  Govarthanan, M., Fuzisawa, S., Hosogai, T., and Chang, Y.C., “Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity”, RSC Advances, 7(34). 2017.
[57]  Johannes, C., Majcherczyk, A., and Hüttermann, A., “Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system”, J Biotech, 61, 151-156. 1998.
[58]  Shimada, T., Takenaka, S., Murayama, N., Yamazaki, H., Kim, J.H, Kim, D., Yoshimoto, F.K., Guengerich, F.P., and Komori, M., “Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes”, Chem Res Toxicol, 28, 268-278. 2015.