Automatic Control and Information Sciences
ISSN (Print): 2375-1649 ISSN (Online): 2375-1630 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Automatic Control and Information Sciences. 2017, 3(1), 16-25
DOI: 10.12691/acis-3-1-4
Open AccessArticle

Building an Effective Data Warehousing for Financial Sector

José Ferreira1, Fernando Almeida2 and José Monteiro1,

1Higher Polytechnic Institute of Gaya, V.N.Gaia, Portugal

2Faculty of Engineering of Oporto University, INESC TEC, Porto, Portugal

Pub. Date: July 28, 2017

Cite this paper:
José Ferreira, Fernando Almeida and José Monteiro. Building an Effective Data Warehousing for Financial Sector. Automatic Control and Information Sciences. 2017; 3(1):16-25. doi: 10.12691/acis-3-1-4


This article presents the implementation process of a Data Warehouse and a multidimensional analysis of business data for a holding company in the financial sector. The goal is to create a business intelligence system that, in a simple, quick but also versatile way, allows the access to updated, aggregated, real and/or projected information, regarding bank account balances. The established system extracts and processes the operational database information which supports cash management information by using Integration Services and Analysis Services tools from Microsoft SQL Server. The end-user interface is a pivot table, properly arranged to explore the information available by the produced cube. The results have shown that the adoption of online analytical processing cubes offers better performance and provides a more automated and robust process to analyze current and provisional aggregated financial data balances compared to the current process based on static reports built from transactional databases.

data warehouse OLAP cube data analysis information system business intelligence pivot tables

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Ballard, C., Herreman, D., Schau, D., Bell, R., & Valencic, A. Data Modelling Techniques for Data Warehousing. Durham, NC: IBM Redbook, 2013.
[2]  Chaudhuri, S., & Dayal, U. An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record, 26(1), 1997, 65-74.
[3]  Ramamurthy, K., Sen, A., & Sinha, A. An empirical investigation of the key determinants of data warehouse adoption. Decision Support Systems, 44(4), 2008, 817-841.
[4]  Pathak, M., Singh, S., & Oberoi, S. Impact of Data Warehousing and Data Mining in Decision Making. International Journal of Computer Science and Information Technologies, 4(6), 2013, 995-999.
[5]  Ponniah, P. Data Warehousing Fundamentals for IT Professionals. Hoboken, NJ: Wiley, 2010.
[6]  Khan, R., & Quadri, S. Business Intelligence: An Integrated Approach. Business Intelligence Journal, 5(1), 2012, 64-70.
[7]  Vercellis, C. Business Intelligence: Data Mining and Optimization for Decision Making. Hoboken, NJ: Wiley, 2009.
[8]  Jensen, C., Pedersen, T., & Thomsen, C. Multidimensional Databases and Data Warehousing (Synthesis Lectures on Data Management). California: Morgan and Claypool Publishers, 2010.
[9]  Cuzzocrea, A., Ferreira, N., & Furtado, P. Data Warehousing and Knowledge Discovery. In L. Bellatreche (Ed.), 16th International Conference, DaWaK: Vol. 8646. Real-Time Data Warehousing: A Rewrite/Merge Approach (pp. 78-89). Heidelberg: Springer, 2014.
[10]  Wang, J. Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications. Hershey: Information Science Reference, 2008.
[11]  Cravero, A. & Sepúlveda, S. Multidimensional Design Paradigms for Data Warehouses: A Systematic Mapping Study. Journal of Software Engineering and Applications, 7(1), 2014, 53-61.
[12]  Sethi, M. Data Warehousing and OLAP Technology. International Journal of Engineering Research and Applications (IJERA), 2(2), 2012, 955-960.
[13]  Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., & Paraboschi, S. Designing Data Marts for Data Warehouses. ACM Transactions on Software Engineering and Methodology, 10(4), 2001, 452-483.
[14]  Wrembel, R. & Bebel, B. Metadata Management in a Multiversion Data Warehouse. Journal n Data Semantics, 4380(8), 2007, 118-157.
[15]  Turban, E., Sharda, R., Aroson, J. E., & King, D. Business Intelligence: A Managerial Approach. Upper Sadle River, New Jersey: Pearson Prentice Hall, 2008.
[16]  Zaki, M., & Meira, W. Data Mining and Analysis. Cambridge: Cambridge University Press, 2014.
[17]  Hand, D., Mannila, H., & Smyth, P. Principles of Data Mining. Boston: The MIT Press, 2001.
[18]  Mazón, J. N., & Trujillo, J. A hybrid model driven development framework for the multidimensional modeling of data warehouses!. ACM SIGMOD Record, 38(2), 2009, 12-17.
[19]  Almeida, F., & Calistru, C. The main challenges and issues of big data management. International Journal of Research Studies in Computing, 2(1), 2013, 11 - 20.
[20]  Romero, O., & Abelló, A. A Survey of Multidimensional Modeling Technologies. International Journal of Data Warehousing & Mining, 5(2), 2009, 1-23.
[21]  Kamble, A. S. A conceptual model for multidimensional data. In Proceedings of the fifth Asia-Pacific conference on Conceptual Modelling, Volume 79 (pp. 29-38). Australian Computer Society, Inc., 2008.
[22]  Schneider, M. A general model for the design of data warehouses. International Journal of Production Economics, 112(1), 2008, 309-325.
[23]  List, B., Bruckner, R. M., Machaczek, K., & Schiefer, J. A comparison of data warehouse development methodologies case study of the process warehouse. In Database and Expert Systems Applications (pp. 203-215). Springer Berlin Heidelberg, 2002.
[24]  Chouhan, S. Role of OLAP Technology in Data Warehousing for Knowledge Discovery. International Journal of Research Aspects of Engineering and Management, 1(1), 2014, 35-37.