Automatic Control and Information Sciences
ISSN (Print): 2375-1649 ISSN (Online): 2375-1630 Website: http://www.sciepub.com/journal/acis Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Automatic Control and Information Sciences. 2014, 2(3), 53-58
DOI: 10.12691/acis-2-3-2
Open AccessArticle

Robust Lead Compensator Design for an Electromechanical Actuator Based on H∞ Theory

Rafik Salloum1, , Mohammad Reza Arvan1 and Bijan Moaveni2

1Faculty of Electrical Engineering, Malek-Ashtar University of Technology (MUT), 15875-1774, Tehran, Iran

2School of Railway Engineering, Iran University of Science and Technology (IUST), 16846-13114, Tehran, Iran

Pub. Date: July 15, 2014

Cite this paper:
Rafik Salloum, Mohammad Reza Arvan and Bijan Moaveni. Robust Lead Compensator Design for an Electromechanical Actuator Based on H∞ Theory. Automatic Control and Information Sciences. 2014; 2(3):53-58. doi: 10.12691/acis-2-3-2

Abstract

In this paper, we design a robust lead compensator for a real Electromechanical Actuator (EMA) harmonic drive by introducing an approach based on H∞ control theory. Here, we address three main topics; experimental identification, uncertainty modelling, and robust control design for a real EMA harmonic drive system. This method verifies good tradeoff between the powerful H∞ controller and the unique features of compensators, such as: simplicity, low cost and easy implementation. The H∞ controller and the extracted compensator are almost identical within the EMA bandwidth range. Simulation and test results prove the effectiveness of the proposed approach and the superiority of the performance of the designed robust EMA with lead compensator based on H∞ controller over the original EMA; this preference is pertaining to its robustness to parametric uncertainties and high performance.

Keywords:
Electromechanical actuator (EMA) identification uncertainty modelling robust control lead compensator H∞ control theory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Ristanović, M., Ćojbašić, Ž. and Lazić, D., “Intelligent control of DC motor driven electromechanical fin actuator,” J. Control Engineering Practice, 20 (6). 610-617. Mar. 2012.
 
[2]  Liscouët, J., MaréJ. C. and Budinger, M., “An integrated methodology for the preliminary design of highly reliable electromechanical actuators: Search for architecture solutions,” Aerospace Science and Technology, 22 (1). 9-18. Oct-Nov. 2012.
 
[3]  Walter, E., Pronzato, L. and Norton, J., Identification of Parametric Model from Experimental Data, Springer, GB, 1997.
 
[4]  Lu, H., Li, Y. and Zhu, C., “Robust synthesized control of electromechanical actuator for thrust vector system in spacecraft,” J. Computers and Mathematics with Applications, 64 (5). 699-708. Sept. 2012.
 
[5]  Toscano, R., “A simple robust PI/PID controller design via numerical optimization approach,” J. of process control, 15 (1). 81-88. Feb. 2005.
 
[6]  ValérioD. and , J., “Tuning of Fractional Controllers Minimising H2 and H Norms,” Acta Polytechnica Hungarica, 3 (4). 55-70. 2006.
 
[7]  Yogesh, V. H., Gupta, J. R. P. and Choudhury, R., “Kharitonov’s Theorem and Routh Criterion for Stability Margin of Interval Systems,” International Journal of Control, Automation, and Systems, 8 (3). 647-654. June 2010.
 
[8]  Saadaoui, K. and Özgüler, A. B., “A new method for the computation of all stabilizing controllers of a given order,” International Journal of Control, 78 (1). 14-28. Jan. 2005.
 
[9]  Tantaris, R. N., Keel, L. H. and Bhattacharyya, S. P., “Stabilization of discrete-time systems by first-order controllers,” IEEE Trans. Automat Control, 48 (5). 858-861. May 2003.
 
[10]  Tan, N., “Computation of stabilizing PI-PD controllers,” International Journal of Control, Automation, and Systems, 7 (2). 175-184. April 2009.
 
[11]  Yeroglu, C. and Tan, N., “Design of Robust PI Controller for Vehicle Suspension System,” Journal of Electrical Engineering & Technology, 3 (1). 135-142. 2008.
 
[12]  Huang, Y. J. and Wang, Y.-J., “Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem,” ISA Transactions, 39 (4). 419-431. Sept. 2000.
 
[13]  Li, X. H., Yu, H.B., Yuan, M.Z. and Wang, J., “Design of robust optimal proportional-integral-derivative controller based on new interval polynomial stability criterion and Lyapunov theorem in the multiple parameters’ perturbations circumstance,” IET Control Theory Appl., 4 (11). 2427-2440. Nov. 2010.
 
[14]  Rigatos, G. and Siano, P., “Design of robust electric power system stabilizers using Kharitonov’s theorem,” Mathematics and Computers in Simulation, 82 (1). 181-191. Sept. 2011.
 
[15]  Yoo, C.-H., Lee, Y.-C. and Lee, S.-Y., “A Robust Controller for an Electro-Mechanical Fin Actuator,” in Proceeding of the American Control Conference, Boston, Massachusetts, 5, June 30-July 2, 2004, 4010-4015.
 
[16]  Benderradji, H., Chrifi-Alaoui, L., Mahieddine-Mahmoud S. and Makouf, A., “Robust Control of Induction Motor with H∞ Theory based on Loopshaping,” Journal of Electrical Engineering & Technology, 6 (2). 226-232. 2011.
 
[17]  Raafat, S. M., Akmeliawati, R. and Abdulljabaar, I., “Robust H∞ Controller for High Precision Positioning System, Design, Analysis, and Implementation,” Intelligent Control and Automation, 3 (3). 262-273. Aug. 2012.
 
[18]  Ljung, L., System Identification: Theory for the User, 2nd edition, Prentice-Hal PTR, Upper Saddle River, NJ, 1999.
 
[19]  Bhattacharyya, S. P., Chapellat, H. and Keel, L. H., Robust Control: The Parametric Approach, Prentice Hall, 1995.
 
[20]  Tavakoli, M., Taghirad, H. D., and Abrishamchian, M., “Identification and Robust H∞ Control of the Rotational/Translational Actuator System,” International Journal of Control, Automation, and Systems, 3 (3). 387-396. Sept. 2005.
 
[21]  Lim, K. B., Cox, D. E., Balas, G. J. and Juang, J.-N., “Validation of an Experimentally Derived Uncertainty Model,” Journal of Guidance, Control, and Dynamics, 21 (3). 485-492. May-June 1998.
 
[22]  Zhou, K., Doyle, J. C. and Glover, K., Robust and Optimal Control, Prentice Hall, Englewood Cliffs, New Jersey, 1996.
 
[23]  Oh, D. C., Bang, K. H. and Park, H. B., “Controller order reduction using singular perturbation approximation,” , 33 (6). 1203-1207. June 1997.
 
[24]  Kuo, C. B., Automatic Control System, 5th edition. Prentice Hall of Indian Private ltd, New Delhi, 1989.